• Title/Summary/Keyword: insulating coating

Search Result 64, Processing Time 0.031 seconds

The development of highly functional paints improving NIR reflectance by investigating silica particles size for pigment mixing (안료배합용 실리카 입자사이즈에 따른 근적외선 반사율을 향상시킨 고기능성 도료 제조)

  • Eunseok Woo;Yunseok Noh;Jinho Lee;Yong-Wook Choi;Bora Kim
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.2
    • /
    • pp.98-104
    • /
    • 2024
  • In order to overcome the urban heat island effect, highly functional paint is attracting attention as a promising means by shielding heat on the structure (building) surface. When a paint was prepared containing nano-sized silica particles, the heat-insulating performance was relatively higher than that of paints with other sizes. In addition, developed paints showed enhanced properties such as chemical resistance and abrasion resistance test because of the presence of nano-sized silica included in functional paint.

The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder (실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Development of Time Domain Reflectometry Probe for Evaluation of Copper Concentration in Saline Environment (염수환경에서의 구리 농도 평가를 위한 Time Domain Reflectometry 프로브 개발)

  • Lee, Dongsoo;Lee, Jong-Sub;Hong, Won-Taek;Yu, Jung-Doung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.15-24
    • /
    • 2018
  • As electromagnetic waves are affected by electrical conductivity or permittivity, they are widely used to evaluate geotechnical characteristics. In this study, a probe for measuring electromagnetic waves using a time domain reflectometry is manufactured to evaluate heavy metal concentration in saline water. In the experiments, a copper is used as a heavy metal, and a probe is demonstrated with the concentration of copper. Solutions were set for 8 different copper concentration (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 mg/L) in saline water with 3% salinity. The probe is coated by electrical insulating materials such as epoxy, top-coat, varnish, acrylic paint, heat-shrinkage tube to measure electromagnetic waves in saline water. The measured signals are compared according to coating material. As results, for probes coated with acrylic paint and heat-shrinkage tube, signal variation is not detected. For epoxy, top-coat, and varnish coated probes, the voltage decreases with an increase of copper concentration. Probes coated by epoxy at once and top coat can estimate under 5 mg/L of copper concentration and the probe coated by epoxy twice can estimate over 5 mg/L of copper concentration. This study shows that the probe using the time domain reflectometry can be used to evaluate the concentration of heavy metal in saline water by coating the probe with insulating material.

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Electrical Characteristics and Performance Evaluation with Manufacturing Process of Zinc Oxide Varistors (산화아연소자의 성형공정에 따른 전기적 특성과 성능평가)

  • Cho, Han-Goo;Yoon, Han-Soo;Kim, Suk-Soo;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1061-1066
    • /
    • 2006
  • This paper presents the electrical characteristics with manufacturing process and performance evaluation of high performance zinc oxide varistors. ZnO varistors were fabricated with typical ceramic production methods with different thickness and the structural and electrical characteristics of ZnO varistors were investigated. All varistors exhibited high density, which was in the range of $5.41{\sim}5.49g/cm^3$. In the electrical properties, the reference voltage increased in the range of $4.410{\sim}5.250kV$ with increasing their thickness and the residual voltage exhibited the same trends as the reference voltage. In the long duration current impulse withstand test, E-2 and F-1 samples failed at the two and four shots of impulse current, respectively, but E-1 and F-2 samples survived 18 shots during the test. Before and after this test, the variation ratio of residual voltage of E-1 and F-2 samples were -0.34 % and 0.05 %, respectively, which were in the acceptance range of 5 %. According to the results of tests, it is thought that if the fabrication process such as insulating coating, sintering condition, and soldering method is improved, these ZnO varistors would be possible to apply to the station class arresters in the near future.

Mg and Ti Doping Effect in $SrBi_2Ta_2O_9$ (Mg와 Ti Doping에 따른 $SrBi_2Ta_2O_9$의 특성 변화)

  • Park, Sol-la;Pak, Sung-Ho;Jun, Ho-Sung;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.43-46
    • /
    • 2002
  • Ferroelectric Mg-doped SBT and Ti-doped SBT were successfully deposited on Pt/Ti/$SiO_2/Si$ substrate by using a sol-gel solution coating method. The solutions were prepared through out adding the metal alkoxide solutions to SBT solution. The typical hysteresis loop of the films was obtained at 5V. The measured $2P_r$ value were $16.50{\mu}C/cm^2$ for SBT, $18.98{\mu}C/cm^2$ and for Mg-doped SBT, and $17.10{\mu}C/cm^2$ for Ti-doped SBT at an applied voltage of 5V, respectively. And it is found that the leakage current densities are less than $10^{-7}A/cm^2$ when applied voltage is less than 10.8MV/cm, which indicates the excellent insulating characteristics.

  • PDF

Pulsed Magnet ron Sputtering Deposit ion of DLC Films Part II : High-voltage Bias-assisted Deposition

  • Chun, Hui-Gon;Lee, Jing-Hyuk;You, Yong-Zoo;Ko, Yong-Duek;Cho, Tong-Yul;Nikolay S. Sochugov
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.148-154
    • /
    • 2003
  • Short ($\tau$=40 $mutextrm{s}$) and high-voltage ($U_{sub}$=2~8 kV) negative substrate bias pulses were used to assist pulsed magnetron sputtering DLC films deposition. Space- and time-resolved probe measurements of the plasma characteristics have been performed. It was shown that in case of high-voltage substrate bias spatial non-uniformity of the magnetron discharge plasma density greatly affected DLC deposition process. By Raman spectroscopy it was found that maximum percentage of s $p^3$-bonded carbon atoms (40 ~ 50%) in the coating was attained at energy $E_{c}$ ~700 eV per deposited carbon atom. Despite rather low diamond-like phase content these coatings are characterized by good adhesion due to ion mixing promoted by high acceleration voltage. Short duration of the bias pulses is also important to prevent electric breakdowns of insulating DLC film during its growth.wth.

Fabrication of Glass-Ceramic Coacted Electrostatic Chucks by Tape Casting (테이프캐스팅에 의한 결정화유리 도포형 정전척의 제조)

  • 방재철;이경호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • This study demonstrated the feasibility of using tape-casting followed by sintering as a low-cost alternative for coating glass-ceramic or glass film on a metal substrate. The process has been successfully used to fabricate a glass-on-stainless steel and a glass-ceramic-on-molybdenum electrostatic chuck(ESC) with the insulating layer thickness about $150{\mu}{\textrm}{m}$. Electrical resistivity data of the coaling were obtained between room temperature and 55$0^{\circ}C$; although the resistivity values dropped rapidly with increasing temperature in both coatings, the glass-ceramic still retained a high value of $10^{10}$ ohm-cm at $500^{\circ}C$. Clamping pressure measurements were done using a mechanical apparatus equipped with a load-cell at temperatures up to $350^{\circ}C$ and applied voltages up to 600V; the clamping behavior of all ESCs generally followed the voltage-squared curve as predicted by theory. Based on these results, we believe that we have a viable technology for manufacturing ESCs for use in reactive-ion etch systems.

  • PDF