• Title/Summary/Keyword: instrumentation-CCDs

Search Result 3, Processing Time 0.015 seconds

DESIGN CONCEPT FOR SINGLE CHIP MOSAIC CCD CONTROLLER

  • HAN WONYONG;JIN Ho;WALKER DAVID D.;CLAYTON MARTIN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.389-390
    • /
    • 1996
  • The CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However, the areas of available sensors are too small for large imaging format. One possibility to obtain large detection area is to assemble mosaics of CCD, and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however, such optimisation is very important, when the ultimate low light level performance is required, particularly for new, or mixed devices. In this work, a new concept is explored for an entirely novel approach, where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The digital controller can be designed within a single EPLD (Erasable Programmable Logic Device) chip produced by a CAD software package, where most of the digital controller circuits are integrated. This method can minimise the component. count., and improve the system efficiency greatly, based on earlier works by Han et a1. (1996, 1994). The system software has an open architecture to permit convenient modification by the user, to fit their specific purposes. Some variable system control parameters can be selected by a user with a wider range of choice. The digital controller design concept allows great flexibility of system parameters by the software, specifically for the compatibility to deal with any number of mixed CCDs, and in any format, within the practical limit.

  • PDF

LABORATORY TEST OF CCD #1 IN BOAO (보현산 천문대 1번 CCD카메라의 실험실 테스트)

  • Park, Byeong-Gon;Cheon, Mu-Yeong;Kim, Seung-Ri
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.67-78
    • /
    • 1995
  • An introduction to the first CCD camera system in Bohyunsan Optica1 Astronomy Observatory(CCD#l) is presented. The CCD camera adopts modular dewar design of IfA(Institute for Astronomy at Hawaii University) and SDSU(San Diego State University) general purpose CCD controller. The user interface is based on IfA design of easy-to-use QUI program running on the NeXT workstation. The characteristics of the CCD#l including Gain, Charge Transfer Efficiency, rms Read-Out Noise, Linearity and Dynamic range is tested and discussed. The CCD#l shows 6.4 electrons RON and gain of 3.49 electrons per ADU, and the optimization resulted in about 27 seconds readout time guaranteeing charge transfer efficiency of 0.99999 for both direction. Linearity test shows that non-linear coefficient is $6{\times}10^{-7}$ in the range of 0 to 30,000 ADU.

  • PDF

CROSSTALK CORRECTION OF THE KMTNet MOSAIC CCD IMAGE (KMTNet 모자이크 CCD 영상의 크로스톡 보정)

  • KIM, SEUNG-LEE;CHA, SANG-MOK;LEE, CHUNG-UK;KIM, DONG-JIN;PARK, BYEONG-GON;LEE, YONGSEOK;PARK, HONG SOO;KYEONG, JAEMANN;CHUN, MOO-YOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • We have constructed a wide-field photometric survey system called as the Korea Microlensing Telescope Network (KMTNet) in 2015. It consists of three 1.6 m optical telescopes equipped with mosaic CCD cameras. Four 9k CCDs were installed on the focal plane of each telescope. In this paper, we present the crosstalk analysis of the KMTNet mosaic CCD images. The crosstalk victims caused by bright sources were visible at eight sub-images obtained through different readout ports of each CCD. The crosstalk coefficients were estimated to be several tens of $10^{-4}$ in maximum, differing from sub-image to sub-image, and the non-linearity effect certainly appeared at the victims made from saturated sources. We developed software functions to correct the crosstalk effect of the KMTNet CCD images. The software functions showed satisfying results to remove clearly most of the crosstalk victims and have been implemented in the KMTNet image processing pipeline since 2015 September.