• Title/Summary/Keyword: instantaneous energy

Search Result 282, Processing Time 0.025 seconds

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method (통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

A Study on the Water Circulation Enhancement inside Harbor Utilizing Wave Energy (파랑에너지를 이용한 항내 해수순환증진에 대한 연구)

  • 오병철;전인식;정태성;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.209-221
    • /
    • 2002
  • In the present paper, a method which enhances the circulation of harbor waters by using wave energy was investigated. The overflow levee was selected as a coastal structure helping the harbor circulation, and was applied to Jeju-outer-port site so as to estimate its effectiveness quantitatively in probabilistic point of view. It was assumed that sea water influx rate through the overflow levee into the harbor depended upon wave height and tidal level and a functional relationship among them was calculated using the results of hydraulic experiment. The probability distribution of water influx could be obtained from hindcasted wave data and measured tidal elevations at Jeju harbor. The Gamma distribution was appeared to best fit the estimated influx distribution, and the optimal location of the levee was discussed. Finally, water quality purification effect was investigated by computing the contaminant material dispersion according to whether the levee was or not.

A Study on the Dynamic Voltage Restorer to Application Luminaire for Emergency Exit Sign Operation to the Energy Storage System (에너지 저장장치(ESS)의 비상 유도등 동작을 적용한 순간전압강하 보상장치에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.433-439
    • /
    • 2015
  • Recently, Interest in power the quality was increased because of increasing the use of sensitive load equipment into an electrical disturbance such as computer, Electricity, Electronics, Telecommunications and semiconductor device. In addition, To enhance power quality, the instantaneous voltage drop occurred in precision load equipment is a need for proper compensation. In order to solve the problem, The developed dynamic voltage restorer (DVR) using an electric double layer capacitor (EDLC) has been applied. In this paper, We will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. Also, As a emergency luminaires of emergency power supply that we can support more than 10 years of life was confirmed the applicability of hybrid capacitor.

Optimization of the Number of Active Antennas for Energy-Efficiency in the MIMO Broadcast Channel (다중 사용자 다중 안테나 하향링크 채널에서 에너지 효율 향상을 위한 기지국 활성 안테나 수 최적화 기법)

  • Choi, Seungkyu;Kim, Dohoon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • We introduce a number of antenna optimization problem for the zero-forcing beamforming (ZFBF) scheme to enhance energy-efficiency (EE) of the multiple-input-multiple-output broadcast channel. For proposed optimization problem, we assume an instantaneous channel gain of the ZFBF scheme as an average channel gain, given by $N_a-K+1$, in order to reduce a computational complexity of finding the number of active antennas $N_a$. Then, we convert a fractional-form objective function into a subtractive-form, and find a solution of $N_a$ and the maximum EE by an iterative process. Simulation results show that the maximum EE value obtained by proposed algorithm is almost identical to the optimal EE value by the exhaustive search method.

The Limited Impact of AGN Outflows: IFU study of 20 local AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak;Karouzos, Marios;Gallo, Elena;Flohic, Helene;Shen, Yue;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2017
  • To investigate AGN outflows as a tracer of AGN feedback on the host galaxies, we perform integral-field spectroscopy of 20 type 2 AGNs at z<0.1 using the Magellan/IMACS and the VLT/VIMOS. The observed objects are luminous AGNs with the [O III] luminosity >$10^{41.5}erg/s$, and exhibit strong outflow signatures in the [O III] kinematics. We obtain the maps of the narrow and broad components of [O III] and $H{\alpha}$ lines by decomposing the emission-line profile. The broad components in both [O III] and $H{\alpha}$ represent the non-gravitational kinematics, (i.e., gas outflows), while the narrow components represent the gravitational kinematics (i.e., rotational disks), especially in $H{\alpha}$. By using the spatially integrated spectra within the flux-weighted size of the narrow-line region, we estimate the outflow energetics. The ionized gas mass is $(1.0-38.5){\times}10^5M_{\odot}$, and the mean mass outflow rate is $4.6{\pm}4.3M_{\odot}/yr$, which is a factor of ~260 higher than the mean mass accretion rate $0.02{\pm}0.01M_{\odot}/yr$. The mean energy injection rate is $0.8{\pm}0.6%$ of the AGN bolometric luminosity Lbol, while the mean momentum flux is $(5.4{\pm}3.6){\times}L_{bol}/c$, except for two most kinematically energetic AGNs. The estimated energetics are consistent with the expectations for energy-conserving outflows from AGNs, yet we do not find any supporting evidence of instantaneous star-formation quenching due to the outflows.

  • PDF

Optimization Algorithm for Energy-Efficiency in the Multi-user Massive MIMO Downlink System with MRT Precoding (MRT 기법 사용 시 다중 사용자 다중 안테나 하향링크 시스템에서의 에너지 효율 향상을 위한 최적화 알고리즘)

  • Lee, Jeongsu;Han, Yonggue;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.3-9
    • /
    • 2015
  • Under the maximum transmit power constraint and the minimum rate constraint, we propose the optimal number of transmit antennas and transmit power which maximize energy-efficiency (EE) in multi-user multiple-input multiple-output (MIMO) downlink system with the maximal ratio transmission (MRT) precoding. Because the optimization problem for the instantaneous channel is difficult to solve, we use independence of individual channel, average channel gain and path loss to approximate the objective function. Since the approximated EE optimization problem is two-dimensional search problem, we find the optimal number of transmit antennas and transmit power using Lagrange multipliers and our proposed algorithm. Simulation results show that the number of transmit antennas and power obtained by proposed algorithm are almost identical to the value by the exhaustive search.