• Title/Summary/Keyword: instability surface

Search Result 497, Processing Time 0.027 seconds

The Static Unstable Characteristics of Tensegrity-Type Cable Dome according to the Structural System (구조시스템에 따른 Tensegrity형 케이블 돔의 정적 불안정 거동특성)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.65-75
    • /
    • 2004
  • A shell structure, having a curvature with a curved surface, is an extremely efficient mechanical creation regard to the external load. A basic structural resistance mechanism is the structural system, which is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Therefore, it has a merit to make thin and lightweight large spacial structures using minimum materials. Among the large spare structural system, the rapid development of the membrane structures, cable structures and the hybrid structures are watched recently. But, this kind of structural system shows the unstable phenomenon by snap-through or bifurcation according to the shape of structure, and the understanding of the collapse mechanism by this phenomenon is very important to the design process. In this study, I investigated the unstable characteristics of the Geiger-type, Zetlin-type and flower-type hybrid cable dome structures, which is the lightweight hybrid structures using compression and tension elements continuously, according to the difference of structural system.

  • PDF

The Influence of Electromyographic Activation on Gluteus Medius and Tensor Fascia Lata by Functional Leg Length Discrepancy in Women's University Students During Lunge (여대생의 기능적 다리길이 차이가 런지 자세에서 중간볼기근, 넙다리근막긴장근의 근활성도에 미치는 영향)

  • Kim, Hae-Ree;Song, Ye-Jin;Moon, Sung-Gi;Jang, Hyun-Jeong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Background: The purpose of this study was to realize the relations between gluteus medius, tensor fascia lata of pelvic muscles and functional leg length in women's university students. This study is examined the change of electromyographic activation on gluteus medius and tensor fascia lata according to the leg length discrepancy. Methods: All of the female of freshman and sophomore in 'D'college were gathered and separated fourteen of healthy women in two groups by functional leg length discrepancy. and The subjects divided into two groups that the difference with less than 2cm or more would have structural defects by tapeline. The electromyographic activation on the gluteus medius and tensor fascia lata muscles were recorded by surface electrodes at maximal voluntary isometric contraction (MVIC) during lunge posture. The collected datas were analyzed using Independent t-test with SPSS win19.0. Results: In intergroup comparison of electromyographic activation levels for gluteus medius and tensor fascia lata in short or long leg, the influence of electromyographic activation on tensor fascia lata is shown to be more statically higher than gluteus medius according to functional leg length discrepancy in coeds. Even though both muscles are shown to be statistically higher in comparison of electoromyographic activation levels for tensor fascia lata and gluteus medius between short leg and long leg in Group I, Differences of electoromyographic activation levels for tensor fascia lata is shown to be statistically higher than gluteus medius. Conclusion: Through this study, we realized that tensor fascia lata than the long leg, and also, tensor fascia lata is significantly effective for functional leg length discrepancy than gluteus medius. It leads to pelvic lateral instability. This means that cause tensor fascia lata to have a leg length discrepancy.

  • PDF

Preparation and Application of Nanofiltration Membranes (NF막 제조 및 응용공정)

  • 이규호;오남운;제갈종건
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.135-153
    • /
    • 1998
  • Nanofiltration (NF) is a recently introduced term in membrane separation. In 1988, Eriksson was one of the first authors using the word 'nanofiltration' explicitly. Some years before, FilmTech started to use this term for their NF50 membrane which was supposed to be a very loose reverse osmosis membrane or a very tight ultrafiltration membrane. Since then, this term has been introduced to indicate a specific boundary of membrane technology in between ultrafiltration and reverse osmosis. The application fields of the NF membranes are very broad as follows: Demeneralizing water, Cleaning up contaminated groundwater, Ultrapure water production, Treatment of effleunts containing heavy metals, Offshore oil platforms, Yeast production, Pulp and paper mills, Textile production, Electroless copper plating, Cheese whey production, Cyclodextrin production, Lactose production. The earliest NF membrane was made by Cadotte et al, using piperazine and trimesoyl chloride as monomers for the formation of polyamide active layer of the composite type membrane. They coated very thin interfacially potymerized polyamide on the surface of the microporous polysulfone supports. The NF membrane exhibited low rejections for monovalent anions (chloride) and high rejections for bivalent anions (sulphate). This membrane was called NS300. Some of the earliest NF membranes, like the NF40 membrane of FilmTech, the NTR7250 of Nitto-Denko and the UTC20 and UTC60 of Toray, are formed by a comparable synthesis route as the NS300 membrane. Commercially available NF membranes nowadays are as follows: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kiryat Weizmann), UTC20; UTC60; UTC70; UTC90 (Toray), CTA-LP; TFCS (Fluid Systems), NF45; NF70 (FilmTec), BQ01; MX07; HG01; HG19; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES 10 (Hoechst), WFN0505 (Stork Friesland). The typical ones among the commercially available NF membranes are polyamide composite membrane consisting of interfacially polymerized polyamide active layer and microporous support. While showing high water fluxes and high rejections of multivalent ions and small organic molecules, these membranes have relatively low chemical stability. These membranes have low chlorine tolerance and are unstable in acid or base solution. This chemical instability is appearing to be a big obstacle for their applications. To improve the chemical stability, we have tried, in this study, to prepare chemically stable NF membranes from PVA. The ionomers and interfacially polymerized polyamide were used for the modification of'the PVA membranes. For the detail study of the active layer, homogeneous NF membranes made only from active layer materials were prepared and for the high performance, composite type NF membranes were prepared by coating the active layer materials on microporous polysulfone supports.

  • PDF

Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion (질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Kim, Yeon-Hwa;Lee, Eil-Hee;Jee, Kwang-Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.433-441
    • /
    • 2007
  • This work investigated the stability of a Sn-modified Pt electrode, which was used for reduction of nitrate, fabricated by an adsorption or electro-deposition of Sn on Pt. In order to find the causes for instability of the electrode, the effects of the solutions in which the electrode was used and the potential applied to the electrode on the electrochemical and metallurgical behaviors of Sn on Pt were studied. The Sn of freshly- prepared modified-Sn Pt electrode existed as Sn hydroxide form, which brought about an easy loss of the electro-activity of the electrode even staying in water, especially in acid solution. When the Sn-modified Pt electrode was used for the reduction of nitrate, the electro-activity of the electrode was affected depending on the potential applied to the electrode. When a more negative potential than the redox equilibrium potential between $Sn(OH)_2$ and Sn was applied to the electrode, the Sn hydroxide was converted to Sn that could diffused into Pt, which leaded to the loss of electro-activity of the electrode as well. The solid diffusion of Sn increased linearly with the applied potential. The Sn-electrodeposited Pt electrode which had more Sn on the electrode was more favorable to maintaining the integrity of the electrode during the reduction of nitrate than the Sn-adsorbed Pt electrode prepared in the under-potential deposition way.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

An Effects of a New PGE1: Lipo-AS013 on Blood Flow and Survival of Skin Flap (새로운 PGE1인 Lipo-AS013이 피판의 혈류와 생존에 미치는 영향)

  • Seul, Chul Hwan;Choi, Jong Woo;Chi, Yong Hoon;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2005
  • Prostaglandin $E_1$($PGE_1$) is known to have various physiological action such as vasodilatation, decrease of blood pressure, angiogenesis, inhibition of platelet aggregation and so forth. $PGE_1$ has been developed in many different formulations in order to overcome its chemical instability and deactivation in the lungs when administered parenterally. Lipo-AS013 is a potent drug with higher chemical stability and greater vascular wall targeting than others. The study was done on $3{\times}10cm$ model flap of dorsal skin of Sprague-Dawley rats and the flap perfusion survival were observed and documented. The flap treated with Lipo-AS013 beforehand was given intravenously Sodium fluorescein 10 minutes later, and then Percent Dye Fluorescence Index(% DFI) was calculated. The results were compared to a control group and the group administered locally epinephrine.. In the control group, the % DFI and flap survival rate increased from $54.1{\pm}6.7$ to $65.0{\pm}2.6$(p<0.01) while in Lipo-AS013 group from $55.3{\pm}2.2$ to $67.4{\pm}1.9$(p<0.01), respectively. In the epinephrine group, the % DFI(p<0.05) and flap survival rate(p<0.001) decreased. In the both epinephrine and Lipo-AS013 group Percent DFI and flap survival rate are comparable with the control group.The result indicates that the potent Lipo-AS013 enhances the blood flow and flap survival. This highly potent Lipo-AS013 may have targeting ability and accumulate $PGE_1$ onto the vascular walls. A quantitative analysis of fluorescence on the skin surface is a reliable tool to measure the blood perfusion into an ischemic flap and its viability. Further comparative study with conventional $PGE_1$ and Lipo-$PGE_1$ is needed in order to clarify the action and efficiency of Lipo-AS013.

Deterioration Diagnosis and Conservation Treatment of the Jincheon Sagongnimaaeyeoraeipsang (Stone Relief of Standing Buddha in Sagok-ri), Korea (진천 사곡리 마애여래입상의 훼손도 진단과 보존처리)

  • Kim, Sa-Dug;Lee, Myeong-Seong;Han, Byeong-Il;Lee, Jang-Jon;Song, Chi-Young
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2009
  • The Jincheonsagongnimaaeyeoraeipsang is a great stone relief Buddha in Goryeo Dynasty, transmitting sculptural styles of the Silla Kingdom. The Buddha was carved on the biotite granite basement, and was undergone cleaning treatment in 2007. The basement rock was opened in plenty cracks bringing out structural instability. And the top of the basement rock was colonized by trees obstructing sunshine and raising humidity. As a result of failure analysis, the basement rock of the Buddha had a major possibility of wedge failure in the parts of the face, hands and cloths. Therefore, the cracks were filled up with epoxy resin L-50, and titanium bars and wire ropes were applied to bind cracked rock blocks. The surface of the crack filler was colored by granite and talc powder with inorganic pigment and L-30. The crack meters were installed on the stone relief Buddha to monitor further behavior, lastly.

  • PDF

Arthroscopic Treatment of Symptomatic Shoulders with Minimally Displaced Greater Thberosity Fracture (상완골 대결절의 미세전위골절의 관절경적치료)

  • Kim Seung-Ho;Ha Kwon-Ick
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.178-186
    • /
    • 1999
  • Twenty-three patients with chronic shoulder pain beyond 6 months after the fracture of the greater tuberosity underwent arthroscopic treatment and were retrospectively assessed after an average of 29 months(range, 22 to 40 months). There were 18 men and 5 women with the average age of 39 years(range, 24 to 61 years). Fourteen were isolated fractures and nine were related to acute anterior instability episode. The average displacement of the fracture was 2.3mm(range, 0 to 4mm) on the anteroposterior view of the plane radiographs. At the time of arthroscopy, all patients had partial thickness rotator cuff tears in the articular surface. The cuff tears were located on the tuberosity fracture area and were an Ellman's grade I to n in depth. With the arthroscopic debridement or repair of the tear depending on the condition of the tear itself, as well as the subacromial decompression, the UCLA score revealed good to excellent results in 20 and fair in 3 patients. Nineteen of the patients had returned to the previous level of activities. The patient with a higher activity demand revealed a lower level of activity return(p=0.034). The partial thickness rotator cuff tear should be considered in patients with chronic shoulder pain after the minimally displaced fracture of the greater tuberosity, and arthroscopic debridement or repair is an appropriate procedure.

  • PDF

Weathering and Deterioration Diagnosis for Conservation Sciences of Stone Pagoda in the Bunhwangsa Temple,Gyeongju, Korea (경주 분황사 모전석탁의 암석학적 풍화와 보존과학적 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Young-Taek
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.92-100
    • /
    • 2004
  • The host rocks of brick-shaped stone pagoda in the Bunhwangsa temple are lots of kinds andesitic rocks, which has gone through mechanical and chemical weathering. As the overall observation, the pagoda is serious damages by air pollutants, and the northeast parts show the much advanced state of turning white, while the southeast parts are heavily cracked in the materials. The rocks of brick-shaped pagoda body are in a relatively stable condition of weathering and damage except for the abrasion and cracks of the corners. The rocks of the pagoda roof suffer from more symptoms including multiple peel-offs, exfoliation, cracks forming round lines, and falling off stone pieces. The pagoda roof rocks are dominated by the thriving leafy lichens and mosses, especially, there are higher plants (selaginella involvens, dandelions) taking root actively between the brick stones and content mortar. There are even light gray precipitates like stalactites between the rocks of the body, In particular, the 1st and 2nd floor in the east side and the body parts in the north side are the most serious. Their major minerals are calcite, gypsum and clay minerals. The rocks of the stylobate and the tabernacle in all the four directions are composed mainly of granitic rocks. The materials consisting of the tabernacles show the severe splits and distortion, which causes the structural instability. The stylobate rocks are heavily contaminated by some weeds with the often marks of inorganic contamination by secondary hydroxides. The central part of the east stylobate has been sinking, while that of the 1st floor west stylobate is protruded nesting a line of cracks. Accordingly, the inside of the tabernacle is always humid with the constant introduction of rainwater. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Each of the stone lion also coated with various colored lichens, mosses, algae, bacteria and bryophyte. The external materials of the pagoda have deteriorated the functions of the rocks and made the loss, falling off, and biological contamination even worse due to the surface weathering. Thus it's urgent to come up with scientific restoration and conservation measures through clinical tests.

  • PDF

Behavior Interpretation of Discontinuity for Conservation Treatment of Standing Sculptured Buddha at the Yongamsa Temple, Korea (옥천 용암사 마애불의 보존관리를 위한 불연속면의 거동특성 해석)

  • Lee, Chan-Hee;Jeong, Yeon-Sam;Kim, Ji-Young;Yi, Jeong-Eun;Kim, Sun-Duk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.81-91
    • /
    • 2004
  • The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.

  • PDF