• 제목/요약/키워드: instability surface

검색결과 491건 처리시간 0.022초

크라이오펌프 알곤 회복시간 측정과 알곤 불안정성 분석 (Measurement of the Ar Recovery Time of a Cryopump and Analysis on the Ar Instability)

  • 인상렬;이동주
    • 한국진공학회지
    • /
    • 제22권5호
    • /
    • pp.225-230
    • /
    • 2013
  • 크라이오펌프는 응축과 흡착을 통해 기체를 배기하므로 극저온 표면 온도와 증기압이 배기성능에 큰 영향을 미친다. 어느 부분의 온도가 어중간하면 한번 응축했던 기체분자가 방출과 재응축 또는 재흡착을 반복하여 진공용기 압력이 어느 선 이하로 떨어지지 않고 심한 요동을 나타낸다. 어떤 기체나 특정 온도 범위에서 이런 불안정성이 나타날 수 있지만 크라이오펌프를 많이 사용하는 스퍼터 장치의 공정기체인 알곤을 배기할 때 불안정성이 발생하는 것은 좋지 않다. 본 논문에서는 알곤 회복시간 측정실험을 수행하면서 크라이오펌프의 알곤 불안정성의 원인과 대책을 분석했다.

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

통풍식 자동차 디스크 브레이크의 열탄성 불안정성에 관한 실험적 연구 (An Experimental Study of Thermoelastic Instability in Automotive Ventilated Disk Brake)

  • 조병수;백병준;박복춘;김종환;김완두
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.10-17
    • /
    • 1997
  • The present study describes an experimental investigation of temperature fluctuations associated with thermal instability. Surface temperatures of brake disk and pad were monitered at various locations in a caliper type brake system during drag braking conditions. It was found that the thermal instability appeared in pad more seriously than in disk. The temperatures at various circumferential positions fluctuate synchronously, whereas the center temperature fluctuates with 180$^{\circ}$ phase difference from the outer and inner radius temperatures. The temperature and amplitude of the temperature perturbations are increased due to the increase of contact area in the center location. It was also found that the thermal instability was dominantly determined by the increase of rotation speed and pressure. And the modification of ventilation path could retard the onset of thermal instability.

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I))

  • 이창호;김영석;조형희
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

경계면 포착법에 의한 밀도차이에 따른 물질경계면을 갖는 다상유동 수치해석 (Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.443-453
    • /
    • 2009
  • The Rayleigh-Taylor instability, the bubble rising in both partially and fully filled containers and the droplet splash are simulated by an in-house solution code(PowerCFD), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows with material interface due to both density difference and instability.

자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구 (Study on Thermoelastic Instability of Automotive Disc Brakes)

  • 최지훈;김도형;이인
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석 (Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016)

  • 이재근;민기홍
    • 대기
    • /
    • 제28권1호
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

Effects of Dual Task Training on Balance and Functional Performance in High School Soccer Players with Functional Ankle Instability

  • Kwak, Kwang-Il;Choi, Bum-Jin
    • The Journal of Korean Physical Therapy
    • /
    • 제28권4호
    • /
    • pp.254-258
    • /
    • 2016
  • Purpose: This study was conducted to identify the effects of dual task training on balance and functional performance in high school soccer players with functional ankle instability. Methods: Twenty high school soccer players with functional ankle instability were randomly assigned to a single task training group and a dual task training group. One participant who did not participate regularly in the training was excluded. The single task training group (n=9) received balance training on an unstable surface. The dual task training group (n=10) received balance training on an unstable surface and had to catch thrown balls during the balance training. Both groups were trained for 4 weeks, 3 days a week. The balance and functional performance of both groups was measured before and after training. Balance was measured using an anterior-posterior and medio-lateral balance. Functional performance was measured based on a figure-of-8 hop test, up-down hop test, and a single hop test. All data were analyzed by repeated two-way ANOVA tests. Results: A time by group interaction effect was not observed in the medio-lateral balance test, figure-of-8 hop test, or single hop test (p>0.05). A time by group interaction effect was observed in the anterior-posterior balance and up-down hop test (p<0.05). Conclusion: These results suggest that dual task training improved balance and functional performance better than single task training for some items.