• Title/Summary/Keyword: inspection robot arm

Search Result 18, Processing Time 0.026 seconds

A Study on Visual Feedback Control of Industrial Articulated Robot (산업용 다관절 로봇의 비주얼 피드백 제어에 관한 연구)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presented how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

Telemedicine robot system for visual inspection and auscultation using WebRTC (WebRTC를 이용한 육안 검사 및 청진용 원격진료 로봇 시스템)

  • Jae-Sam Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • When a doctor examines a patient in a hospital, the doctor directly checks the patient's condition and conducts a face-to-face diagnosis through dialogue with the patient. However, it is often difficult for doctors to directly treat patients. Recently, several types of telemedicine systems have been developed. However, the systems have lack of capabilities to observe heart disease, neck condition, skin condition, inside ear condition, etc. To solve this problem, in this paper, an interactive telemedicine robot system with autonomous driving in a room capable of visual examination and auscultation of patients is developed. The developed robot can be controlled remotely through the WebRTC platform to move toward the patient and check a patient's condition under the doctor's observation using the multi-joint robot arm. The video information, audio information, patient's heart sound, and other data obtained remotely from patients can be transmitted to a doctor through the web RTC platform. The developed system can be applied to the various places where doctors are not possible to attend.

A comparison and analysis of laser sensors for measuring the flatness and thickness of flat display glass (평판 디스플레이용 유리의 평탄도 및 두께 측정을 위한 레이저 센서의 비교 분석)

  • Kim, Soon-Chul;Han, Chang-Ho;Oh, Choon-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 2008
  • In this paper the glass inspection system for the thickness and flatness is implemented. Laser sensors and robot arms required for glass measurements is tested on the performance assesment. Three kinds of laser sensors are used and analysed, and 3-axis robot arm with the ball-screwed type is implemented. Thus the methods of glass measurement is discussed and the difficulties are solved to propose the solutions. To minimize the errors of glass measurement the system is improved as considered device errors.

  • PDF

Design of Remotely Operated, Underwater Robotic Vehicle System for Reactor Vessel Inspection and Foreign Objects Removal (원자로 압력용기 육안검사 및 이물질 제거용 수중로봇 시스템의 설계)

  • 조병학;변승현;김진석;오정묵
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.153-156
    • /
    • 2002
  • The remotely operated underwater robotic vehicle system has been required to inspect some objects such as baffle former bolts and remove foreign objects in reactor vessel of nuclear power plant. In this paper, we have designed the remotely operated underwater robotic vehicle system that includes a long reach arm that is composed of 4 joints to remove foreign objects in a narrow space, a camera for visual test, instrument sensors for vehicle positioning, 4 thrusters for underwater navigation of vehicle, and supervisory control system implemented with industrial PC that includes robot simulator that has the functions of real time visualization, robot work planning and etc.

  • PDF

A Study on Real-Time Trajectory Tracking Control of SCARA Robot with Four Joints Based on Visual Feedback (영상 피드백에 의한 4축 스카라 로봇의 실시간 궤적추적제어에 관한 연구)

  • Jung, Yang-Guen;Shim, Hyun-Seok;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presents how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.