• Title/Summary/Keyword: inspection model

Search Result 1,277, Processing Time 0.024 seconds

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

A Study on Automatic Inspection Algorithm for Moving Object using by Vision System (비전시스템을 이용한 이동물체 자동검사에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • Recently the research is much interested in about the inspection system using by computer vision system. In this paper, we deal with shape inspection technique for moving to be long and narrow object on conveyor belt. first, we are acquired for moving object on conveyor belt. then the object segmentation is using by color information for background and object. the object position be calculated by horizontal and a vertical histogram. second, we are checked for two hole in front part, widths and top/bottom side information in middle part, and finally checking for two holes in rear part. The performance of our proposed model is evaluated by experiments, within error of 1㎜, and can be checking to 17 object /min.

A Study on the Multistage Screening Procedure when Inspection Errors are Present (검사 오류를 고려한 다단계 선별절차에 관한 연구)

  • Kwon, Hyuck-Moo;Kim, Young-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.4
    • /
    • pp.88-95
    • /
    • 2005
  • Multistage screening is a common practice when a component has a critical effect on the function of the assembly. A defect in a component might incur malfunction of an electronic device, resulting in a great amount of loss. Multistage screening, including duplicated screening inspections, may provide a good solution for this problem when inspection errors are present. In the company studied here, the manufacturing process of the multiple layer chip capacitor includes two-stage screening. In the first stage, screening inspection is performed repeatedly until no defects are found in the lot. In the second stage, sampling inspection is performed by a group of experts prior to shipment. In this article, we review the procedure used in the field and suggest a revised model of the multiple screening procedure and solution method for this situation. The usefulness of the proposed model is discussed through a practical example.

Model of Reliability Assessment in Ultrasonic Nondestructive Inspection (초음파 비파괴검사의 신뢰도 평가 모델)

  • Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Park, Yoon-Won;Kang, Suk-Chull;Choi, Young-Hwan;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.240-245
    • /
    • 2001
  • Ultrasonic inspection system is consisted of the operator, equipment and procedure. The reliability of results in ultrasonic inspection is affected by its ability. Furthermore, the reliability of nondestructive testing is influenced by the inspection environment, other materials and types of defect. Therefore, it is very difficult to estimate the reliability of NDT due to various factors. In this study, the probability of detection, used logistic probability model and Monte Carlo simulation, estimated the reliability of ultrasonic inspection. The utility of the NDT reliability assesment is verified by the analysis of the data from round robin test applied these models.

  • PDF

A Mixed 0-1 Linear Program for the Inspection Location Problem

  • Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 1984
  • An economic model is developed for determining optimal locations of screening inspection stations in a multistage production system. The effect of screening inspection on the production rate is explicitly considered, and a fixed cost for maintaining an inspection station is assumed. The product is allowed to have multiple defects, each of which may be inspected at any inspection station after the defect-generating operation. The problem is formulated as a mixed 0-1 linear program which offers the advantage of versatility in handling various system constraints.

  • PDF

Optimal Inspection Period for the System Subject to Random Shocks

  • Kim, Sung-Soon;Choi, Seung-Kyoung;Lee, Eui-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.725-733
    • /
    • 2005
  • A system subject to random shocks is considered. The shocks arrive according to a Poisson process and the amount of each shock is exponentially distributed. In this paper, a periodic inspection policy for the system is compared with a random inspection policy. After assigning several maintenance costs to the system, we calculate and compare the long-run average costs per unit time under two policies.

  • PDF

Markovian Approach of Inspection Policy in a Serial Manufacturing System (Markovian 접근방법을 이용한 직렬생산시스템의 검사정책)

  • 정영배;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.81-85
    • /
    • 1988
  • This paper presents a model that considers combinations of rework, repair, replacement and scrapping. Policy-Iteration method of inspection is proposed for a serial manufacturing system whose repair cost, scrap cost and inspection cost. when it fails, can be formulated by Markovian approach. Policy-Iteration stops when new inspection policy is the same as previous inspection policy. A numerial example is presented.

  • PDF

Rebar Spacing Fixing Technology using Laser Scanning and HoloLens

  • Lee, Yeongjoo;Kim, Jeongseop;Lee, Jin Gang;Kim, Minkoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2024
  • Currently rebar spacing inspection is carried out by human inspectors who heavily rely on their individual experience, lacking a guarantee of objectivity and accuracy in the inspection process. In addition, if incorrectly placed rebars are identified, the inspector need to correct them. Recently, laser scanning and AR technologies have been widely used because of their merits of measurement accuracy and visualization. This study proposes a technology for rebar spacing inspection and fixing by combining laser scanning and AR technology. First, scan data acquisition of rebar layers is performed and the raw scan data is processed. Second, AR-based visualization and fixing are performed by comparing the design model with the model generated from the scan data. To verify the developed technique, performance comparison test is conducted by comparing with existing drawing-based method in terms of inspection time, error detection rate, cognitive load, and situational awareness ability. It is found from the result of the experiment that the AR-based rebar inspection and fixing technology is faster than the drawing-based method, but there was no significant difference between the two groups in error identification rate, cognitive load, and situational awareness ability. Based on the experimental results, the proposed AR-based rebar spacing inspection and fixing technology is expected to be highly useful throughout the construction industry.

Development of An Inspection Method for Defect Detection on the Surface of Automotive Parts (자동차 부품 형상 결함 탐지를 위한 측정 방법 개발)

  • Park, Hong-Seok;Tuladhar, Upendra Mani;Shin, Seung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.452-458
    • /
    • 2013
  • Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.

A Study on the Development of Inspection Module for Port State Control (항만국통제 검사 모듈 개발에 관한 연구)

  • 이은방;이인수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.2
    • /
    • pp.17-31
    • /
    • 2000
  • Port State Control(PSC) plays important roles in ensuring the ship' safety as well as preserving the marine environment in port and coastal sea. The effect of PSC carried out according to the procedure and document offered by Tokyo MOU depends greatly on inspector and inspection technique. So, it is very important to inspect ships impartially with advanced method. In the case of Korea, the only 30 percent of ships with deficiencies visited to ports are inspected due to the lack of PSC inspectors. So new inspection technique and module are required in order to improve inspection efficiency and to resolve problems mentioned. In this paper, we introduce a module for PSC inspection and evaluate it by inspecting 10 model ships and comparing with present method. The proposed module is expected to obtain the objectivity of inspection, to offer inspection guideline and to determine the priority of inspection ships.

  • PDF