• Title/Summary/Keyword: inspection model

Search Result 1,277, Processing Time 0.031 seconds

Reliability Evaluation of Constant Pressure Mechanism on Phased Array Ultrasonic Testing for Wind Turbine Blade (위상배열 탐상검사법을 이용한 풍력발전용 블레이드의 일정가압 메커니즘 신뢰성 평가)

  • Nam, Mun Ho;Chi, Su Chung;Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.236-245
    • /
    • 2017
  • Purpose: There is no established inspection system for composite wind blade during the fabrication stage even though the blades are one of the most important part at wind generation system, but phased array ultrasonic testing method has been continuously studied about wind turbine blade with composite. When wind turbine blade with complex shape by phased array probe is inspected, it is necessary to study for system keeping constant pressure using pressure device. Methods: In this paper, we propose constant pressure device for inspecting wind turbine blade by phased array ultrasonic test method. Design of the device controller is based on Hunt-Crossley model. We evaluate reliability of phased array ultrasonic inspection result that applicated constant pressure device. Result: Defect indication is precise and its error is small when constant pressure mechanism based on Hunt-Crossley model was used. Conclusion: When inspection is progressed using constant pressure mechanism, the reliability of composite wind blade inspection can be improved.

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Use of Artificial Bee Swarm Optimization (ABSO) for Feature Selection in System Diagnosis for Coronary Heart Disease

  • Wiharto;Yaumi A. Z. A. Fajri;Esti Suryani;Sigit Setyawan
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.130-138
    • /
    • 2023
  • The selection of the correct examination variables for diagnosing heart disease provides many benefits, including faster diagnosis and lower cost of examination. The selection of inspection variables can be performed by referring to the data of previous examination results so that future investigations can be carried out by referring to these selected variables. This paper proposes a model for selecting examination variables using an Artificial Bee Swarm Optimization method by considering the variables of accuracy and cost of inspection. The proposed feature selection model was evaluated using the performance parameters of accuracy, area under curve (AUC), number of variables, and inspection cost. The test results show that the proposed model can produce 24 examination variables and provide 95.16% accuracy and 97.61% AUC. These results indicate a significant decrease in the number of inspection variables and inspection costs while maintaining performance in the excellent category.

Optimal Inspection Policy By Fuzzy Goal Programming (Fuzzy Goal Programming을 이용한 최적 검사 정책)

  • 유정상
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.185-191
    • /
    • 1995
  • In this research, a mathematical programming model is developed for the economic modeling of sampling plans based on two evaluation criteria : the outgoing quality and the average total inspection cost A fuzzy goal programming model and its solution procedure are proposed for the managers whose management objectives on the two evaluation criteria are not rigorous. To study the sensitivity of quality characteristic dependence on the resulting inspection plans, a numerical example is solved several times for a dependent model.

  • PDF

Analysis of Ammunition Inspection Record Data and Development of Ammunition Condition Code Classification Model (탄약검사기록 데이터 분석 및 탄약상태기호 분류 모델 개발)

  • Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.

Application of Generic Algorithm to Inspection Planning of Fatigue Deteriorating Structure

  • Kim, Sung-chan;Fujimoto, Yukio;Hamada, Kunihiro
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.42-57
    • /
    • 1998
  • Genetic Algorithm (GA) is applied to obtain optimal Inspection plan for fatigue deteriorating structures. The optimization problem is defined so as to minimize inspection cost in the 1ifs-time of the structure under the constraint that the increment of failure probability in each inspection interval is maintained below a target value. Optimization parameters are the inspection timing and the inspection quality. The inspection timing is selected from the discrete intervals such as one year, two years, three years, etc. The inspection quality is selected from the followings; no inspection, normal inspection, sampling inspection or precise inspection. The applicability of the proposed GA approach is demonstrated through the numerical calculations assuming a structure consisting of four member sets. Influences of the level of target failure probability, initial defect condition and stress increase due to plate thickness reduction caused by corrosion on inspection planning are discussed.

  • PDF

Analysis of an Inspection Process Allowing Consecutive Two-time Testing of Products Using Markov Chains (연속되는 이중 검사를 허용하는 제품품질검사 프로세스에 대한 마르코프 체인을 이용한 분석)

  • Ko, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2452-2457
    • /
    • 2012
  • When a quality inspection process rejects a product unit, consecutive repeated inspections are sometimes conducted for the rejected unit to reduce a false reject possibility. This paper analyzes a special inspection process that allows up to two times of consecutive testing for each product to decrease type I inspection errors. This study uses a Markov chain to model the steps of the inspection process and a product unit's quality states during inspection. Historical inspection results from a company are used as the data for the Markov chain model. Using the Markov chain model and data, this study analyzes the effect of this special inspection rule on the proportion of the final quality levels and scrap rate. The results demonstrate that this inspection process of possible double testing could help reduce unnecessary rejects and consequently decrease material and production costs.

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection (확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법)

  • Erdene, Khuvilai;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2020
  • To utilize building information modeling (BIM) technology at the bridge maintenance stage, it is necessary to integrate large quantities of bridge inspection and model data for object-oriented information management. This research aims to establish the benefits of utilizing the extended industry foundation class (IFC)-BIM and ontology for bridge inspection information management. The IFC entities were extended to represent the bridge objects, and a method of generating the extended IFC-based information model was proposed. The bridge inspection ontology was also developed by extraction and classification of inspection concepts from the AASHTO standard. The classified concepts and their relationships were mapped to the ontology based on the semantic triples approach. Finally, the extended IFC-based BIM model was integrated with the ontology for bridge inspection data management. The effectiveness of the proposed framework for bridge inspection information management by integration of the extended IFC-BIM and ontology was tested and verified by extracting bridge inspection data via the SPARQL query.