• 제목/요약/키워드: inside clothing temperature

검색결과 61건 처리시간 0.026초

양산형 일광차단모의 개발(제2보) -실외 인체착용시 복사열 및 자외선의 차단효과- (Development of the Sunshade hat with a large brim (Part II) - Human trial test at outdoors -)

  • 최정화;김경수
    • 한국의류학회지
    • /
    • 제28권3_4호
    • /
    • pp.414-421
    • /
    • 2004
  • To reduce farmer's stress from solar radiation and ultraviolet radiation(UV), the sunshade hat with a large brim and special structure for ventilation was developed and tested with manikin heads outdoors at previous study(Kim and Choi, 2002). To evaluate the protection efficiency of the sunshade hat, human trial test was performed at outdoors. The results were as follows; Skin temperatures(7 sites), heart rate, temperature inside the hats, temperature and relative humidity inside clothing on the back in wearing developed sunshade hat were significantly lower than those in wearing the controlled hat. In subjective sensation, subjects answered to feel significantly hotter, more humid and more uncomfortable in wearing the controlled hat. But relative humidity inside the hats was significantly higher in wearing developed hat. In rectal temperature, there were no significant differences between two hats.

체지방률이 착의량체계에 미친 영향 (The effects of subcutaneos fat on the system of clothing weights)

  • 김양원
    • 대한가정학회지
    • /
    • 제35권4호
    • /
    • pp.139-148
    • /
    • 1997
  • The rates of subcutaneos fat on the system of clothing weights including clothing microclimate subjective sensations were measured to get basic data to develop guideline for healthy clothing life. for this study skinfold thickness the rate of subcutaneos fot clothing microclimate subjective sensations and clothing weights were measured from 85 male and 105 female colligians. The results were as follows: 1. The rate of subcutaneos fat showed negative correlation with the temperature inside clothing in chest but not with the temperatures in back and thigh. The correlation was not significant between the rate of subcutaneos fat and humidity inside clothing 2. The correlation between the rate of subcutaneos fat and thermal sensations was positively significant at 5% level. However no correlation was found between the rate of subcutaneos fat and humid sensations. 3. There was significant correlation between the rate of subcutaneos fat and under clothing weights and total clothing weights.

  • PDF

청소년들의 겨울철 교실 내·외 환경에서의 자각적 내한성과 착의행동 분석 (Analysis of Teenagers' Self-identified Cold Tolerance and Wearing Behavior Inside and Outside the Classroom During Winter)

  • 홍민현;손수영
    • 한국의류학회지
    • /
    • 제44권1호
    • /
    • pp.126-140
    • /
    • 2020
  • This study analyzed the self-identified cold tolerance and wearing behavior of teenagers inside and outside the classroom during winter, considering recent climate changes. A questionnaire was divided into four parts-general information, thermal and comfort sensation inside and outside classroom, self-identified cold tolerance, and wearing behavior to collect data from 322 students. Over several years, changes were noted in respondents' wearing behavior during winter outings, with the biggest being the purchase of a "long padded jacket" for warmth while outside. Most respondents showed similar wearing behavior, such as no difference between the number of clothes worn in a classroom maintained at 20℃ (girls: 8.0±3.1 layer, boys: 6.5±2.1 layer) and outside (girls: 8.8±3.4 layer, boys: 7.1±3.0 layer), despite feeling differently about the thermal sensation inside and outside the classroom. This difference may due to a teenager's lack of knowledge about temperature and their tendency to follow clothing trends. Female students were more sensitive to the cold and wore more garments inside and outside the classroom. Gender-related differences should be considered when educating teenagers about safe and healthy clothing.

온돌환경이 수면시의 생리반응엔 미치는 영향 -봄철 수면시 침실내 온열환경과 침상기후- (Effect of Ondol Environment on Physiological Regponseg during Sleeping (II) The Actual Conditions of Bedclimate in Spring -)

  • 이순원;권수애
    • 한국의류학회지
    • /
    • 제21권3호
    • /
    • pp.516-523
    • /
    • 1997
  • The actual conditions of bedclimate are investigated depending on the regions and housing styles used on ondol in spring. Sixty healthy men and women (30 of them live in apartment and 30 of them live in detached house, 20 of them live in Wonju, 20 of them live in Cheongiu and 20 of them live in Pusan). The results are as follows: 1) The differences of bedclothes thickness between spring and autumn were not significant. weight of sleep-wear in spring was less than those in the autumn. 2) In the spring, the temperature and humidity of bedroom, floor, on/under the mattress, were lower and the temperature inside the sleep-wear was higher than those in the autumn. 3) The differences of the temperature and humidity of bedroom, the bed climate, and the clothing microclimate were significant by the regions and housing styles in spring. The temperature of bedroom and inside sleep-wear, the humidity of bedroom and inside sleep- wear in the apartment were higher than those in the detached house. 4) The differences of comfort sensation on the bedroom conditions was significant by the regions, and the differences of thermal sensation was significant by the housing styles. Most subjects perceived warm and dry but comfortable.

  • PDF

여름철 내열성 증진을 위한 정량적 착의훈련의 효과 (제1보) -20대 여성의 적정착의 온도 설정: 의복내 온도를 중심으로- (A Study on Quantitative Wear Training for the Improvement of Heat Tolerance in Summer (Part I) -20's Females' Optimal Wearing: Focus on Inside Clothing Temperatures in Pre-summer-)

  • 이효현;최정화
    • 한국의류학회지
    • /
    • 제36권3호
    • /
    • pp.259-268
    • /
    • 2012
  • This study suggests quantitative guidelines for inside clothing temperatures to improve the heat tolerance of 20's females in summer. First, the inside clothing temperatures ($T_{cl}$) of each subject was measured in daily use. The subjects were asked to record subjective thermal sensations, clothing items worn, clothing weight, and activities during an experiment designed to determine the comfort zone of $T_{cl}$. In a thermally neutral state, the comfort zone of $T_{cl}$ was decided on a mean value $T_{cl}{\pm}1{\sigma}$. Second, the subjects were asked to wear clothing that would enable them to feel 'slightly warm but still comfortable'. The rest of the processes were the same as previous steps that were designed to understand the way and degree of clothing control. The comfort zone of $T_{cl}$ was decided in the same manner as the previous step. The two comfort zones were combined and named the combined comfort zone of the definitive comfort zone. The results were as follows: 1. Thermally comfortable $T_{cl}$, Hcl were $34.0{\pm}1.1^{\circ}C$, $40{\pm}9%%RH$ and the thermally comfortable ambient climate was $25.0{\pm}1.6^{\circ}C$, $53{\pm}7%$RH. 2. When subjects were asked to wear 'slightly warm but still comfortable', there were difference in thermally comfortable $T_{cl}$, clothing weight and clothing layer by subject. 3. In this study, the optimal $T_{cl}$ was decided on the mid-point of the definitive comfort zone of $T_{cl}$.

더운 환경에서 산업용 각반 착용 시 인체생리반응 (Physiological Responses of Wearing Industrial Gaiters in a Hot Environment)

  • 최정화;박준회
    • 한국의류학회지
    • /
    • 제32권7호
    • /
    • pp.1129-1136
    • /
    • 2008
  • The gaiter is one of the personal protective equipments worn in various industrial sites. This study was performed on humans to investigate the physiological strain of wearing gaiters and to compare control gaiters that are currently on the market and new gaiters that are developed for alleviating heat stress. Experiments were conducted in a climatic chamber of WBGT $30.0\pm0.7^{\circ}C$ under five differed experimental conditions: None, Control A, Control B, New A, New B. The results were as follows. The temperature inside gaiters was significantly lower in both New A and New B than in both Control A and Control B and the difference between news and controls was 1$^{\circ}C$ (p<.01). The humidity inside gaiters in both New A and New B were higher than that in Control A, and lower than that in Control B (p<.01). The outermost surface temperature of the gaiter was the lowest in None and it increased in the following order: New B < New A < Control A < Control B. Mean skin temperature was higher by 0.14$^{\circ}C$ in wearing gaiters than in no gaiters. Skin temperatures in lower body were lower in Control than in New and skin temperature in upper body were higher in Control than in New (p<.01). Local sweat rate, total weight loss and subjective sensations did not show a significant difference according to the gaiters. It was concluded that wearing gaiters affected distribution of skin temperature and local sweat rate.

전자파 차단 보호복의 온열쾌적성 평가 (Thermal Comfort Evaluation of Protective Clothing for Shielding Electromagnetic Waves)

  • 최정화;김명주;박준희;김도희
    • 한국지역사회생활과학회지
    • /
    • 제21권4호
    • /
    • pp.595-603
    • /
    • 2010
  • The present study was performed on humans to investigate the physiological strain of wearing protective clothing for shielding electromagnetic waves and to compare control clothing that are currently on the market and new clothing that are developed for improving thermal comfort and material weight. Experiments were conducted in a climatic chamber of $28.8{\pm}0.6^{\circ}C$, $37{\pm}5%$RH under three differed experimental clothing conditions: None, Control, New. The results were as follows. Mean skin temperature and rectal temperature in New were significantly lower than that in None and Control (p<.05). The temperature and humidity inside clothing were lower in None (p<.05). Total weight loss was lower in New. Thermal sensation and thermal comfort were less hot and more comfortable in New than those in Control. It was concluded that wearing the protective clothing for shielding electromagnetic waves affects physiological responses such as distribution of body temperature, sweat rate, etc.

하절기 속옷의 착용이 인체의 생리적 반응과 주관적 감각에 미치는 영향 (The Effects of Underwear on Clothing Microclimate, Physiological Responses, and Subjective Sensations During Summer)

  • 김양원
    • 한국생활과학회지
    • /
    • 제7권1호
    • /
    • pp.139-146
    • /
    • 1998
  • The actual clothing conditions of male collegian were surveyed to analyse clothing contents and the rate of wearing underwear. Then, clothing microclimate, physiological responses, and subjective sensations were investigated through wearing trials on human body in climatic chamber based on the results from the survey. The results were follows: 1. Male collegian wore T-shirts, jeans, and socks in summer, and total clothing weight per body surface area was $561g/m^2$. The number of clothes for upper body were 1 layer, but the number of clothes for lower body were 2 layers. Subjective sensations have no significant difference with wearing underwear. 2. Most physiological responses including temperature inside clothing, mean skin temperature, skin temperature of chest, abdomen, thigh, and lower leg, and sweat rate, were higher in with-underwear than in without-underwear. But pulse rates were not significantly different between with-and without-underwear.

  • PDF

여름철 온돌에서 취침시 이불종류에 따른 침상기후와 인체반응 연구 (A Study on Bedclimate, Physiological Responces and Subjective Sensations of Bedquilts During Sleeping on Ondol in Summer)

  • 권수애;이순원;최정화
    • 한국의류학회지
    • /
    • 제16권3호
    • /
    • pp.285-298
    • /
    • 1992
  • In this study, bedclimate was investigated depending on various bedquilts used oin ondol in summer. The environmental room condition was maintained at 26: $1^{\circ}C,\;75{\pm}3\%$ R.H., while the ondol surface was kept at $25{\pm}1^{\circ}C$ without heating. The types of bedquilts were hemp, cotton, quilt made of polyester padding with polyester/cotton cover. Two healthy young women were subjected for seven hours' sleep with two replications for this study. The results are as follows. 1) The range of the temperature under the mattress ($25.2\~32.4^{\circ}C$) was lower than that of the temperature on the mattress ($28.8\~35.5^{\circ}C$), or that of the temperature inside the bedquilts ($30.3\~34.4^{\circ}C$). The humidity inside the bedquilts increased during sleeping, and the range of R.H. was $58\~80\%$. 2) The ranges of bedclimate which subjects feel comfortable were $30.5\~33.8^{\circ}C$ on the mattress, $31.0\~34.9^{\circ}C$, $61\~74\%$ R.H. inside the bedquilts. At this range, the mean skin temper-ature of the subjects was $34.3^{\circ}C\~35.2^{\circ}C$. 3) When there was no heating, the weight of the bedding increased during sleeping, and the weight increase was largest in the case of mattress. 4) There were correlations among the skin temperature of three points of the body (abdomen, thigh, foot) and the temperature and R.H. inside the bedquilt. 5) The effect of the type of bedquilts on the microclimate and physiolosical responses were significant. 6) Generally, when there was no heating, the body heat was transferred to the ondol floor, in summer, heat was transferred mostly through the mattress.

  • PDF

비닐하우스용 작업복의 자외선 차단 성능과 착용감 연구 (UV ray protective function and wear sensation of garment for plastichouse worker)

  • 최정화;백윤정
    • 한국농촌생활과학회지
    • /
    • 제6권1호
    • /
    • pp.25-30
    • /
    • 1995
  • This study was designed to obtain the basic data developing the UV ray protective garments for the plastichouse workers. Two subjects were volunteered for 1hr. wear test in plastic house, and the ensembles was composed of one of three kinds blouse (UV blocking blouse, polyester/cotton 47/53 blouse, and polyester blouse), shorts, sleeveless undershirts, pants and socks. The measurements were rectal temperature, skin temperature, microclimate inside clothing, subjective sensation, and the colour difference of UV sensor. The results were as follows: 1. Microclimate especially, temperature inside clothing of polyester blouse was the highest among the garments. And UV-proof polyester blouse showed the lower mean skin temperature and microclimate than others. Showing the highest sweat volume. 2. No significant difference on UV ray blocking function among 3 kinds of garment was shown. 3. We could conform that in spring for the plastic house wぉw s garment low thermal insulating value and wide covering area were more important factors than UV blocking function of fabric.

  • PDF