• Title/Summary/Keyword: insertion mutant

Search Result 79, Processing Time 0.024 seconds

Transfer of foreign Genes into the Bradyrhizobium japonicum and their Inoculation Effects on Soybean Plants (Bradyrhizobium japonicum에 외부유전자(外部遺傳子)의 도입(導入)과 대두(大豆)에 대한 접종효과)

  • Kim, Yong-Woong;Kim, Kil-Yong;Rhee, Young-Hwan;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 1992
  • The fate of inoculum strain of Bradyrhizobium japonicum was studied by using genetically marked strain. RJB6 $str^rnal^rneo^r$. A spontaneous mutant of B. japonicum isolated from nodules was made to have antibiotic resistance against streptomycin and nalidixic acid. In order to make genetically marked strain, neomycine resistant gene(Tn5) was introduced into this spontaneous mutant by conjugation with E. coli containing pSUP2021. The southern hybridization was carried out to confirm the plasmid insertion. Hybridization of chromosome DNA using pSUP2021(Tn5) as a probe showed that Tn5 was located on the 4.9kb fragment of chromosome. Soybean seeds were planted into a soil previously cultivated with soybean and inoculated with different cell densities of marked strain. Fourty days after planting, the inoculation effects on nodule number, nodule fresh weight, plant height and nitrogen content in the plot inoculated with heavy cell suspension was a little better than those in the plot with low inoculation. The recovery percentage of the marked strains was about 12% in the plot inoculated with heavy density cell suspension, while 5% in the plot inoculated with low cell suspension.

  • PDF

Isolation of a Leucoanthocyanidin Dioxygenase (LDOX) Gene from a Spray-type Chrysanthemum (Dendranthema × grandiflorum) and Its Colored Mutants (스프레이형 국화와 화색변이체로부터 Leucoanthocyanidin dioxygenase (LDOX) 유전자의 분리)

  • Chung, Sung-Jin;Lee, Geung-Joo;Lee, Hye-Jung;Kim, Jin-Baek;Kim, Dong-Sub;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.818-827
    • /
    • 2010
  • A full-length cDNA and genomic DNA of a $leucoanthocyanidin$ $dioxygenase$ ($DgLDOX$) gene was isolated from the petals of chrysanthemum 'Argus', and comparative features of the gene among three flower color mutants derived from a gamma-ray mutagenesis were characterized. The cDNA coding region of the gene was 1068 bp and was translated into 356 amino acids accordingly. The genomic DNA size was 1346 bp for 'Argus', while three mutants revealed ranges of 1363 to 1374 bp. A single intron between two coding exons for the $DgLDOX$ gene was found, of which size was 112 bp for 'Argus', but 128 or 137 bp for three flower color mutants, indicating that a genomic insertion in the intron occurred during the gamma-ray mutagenesis. DNA blot analysis revealed the $DgLDOX$ gene presenting as a single copy in the chrysanthemum genome. The $DgLDOX$ gene was expressed in both 'Argus' of light-pink color and two purple color mutants (AM1 and AM3) but had very weak expression in only white color mutant (AM2). The results demonstrated that variations in the flower color of the mutants might be associated with changes in the amino acid moieties in the coding exons or fragment insertions in the intron of the $DgLDOX$ gene, which potentially resulted in less expression of the gene in the white colored mutant.

Characterization of T-DNA Insertional Mutant of Formaldehyde-Responsive Protein1 (T-DNA 삽입에 의한 Formaldehyde-Responsive Protein1 기능파괴 돌연변이체의 특성연구)

  • Seo, Jae-Hyun;Woo, Su-Young;Kim, Wook;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • Formaldehyde responsive protein(FRP) 1 belongs to the family of universal stress protein(USP) and is known to respond to stress caused by fumigation of gaseous volatile organic compounds(VOCs) such as formaldehyde and toluene. However, the molecular function of this protein is not well understood at cellular and molecular level. In this study, loss of function mutant of FRP1 generated by T-DNA insertion(frp1-4) has been isolated from Arabidopsis thaliana and the function of FRP1 was characterized. The loss-of-function mutant of FRP1 appeared slight growth defects with shorter stem and rosette leaves compared to wild type. In addition, the damage caused by exogenous VOCs was more severe in frp1-4 than in control. Therefore, Arabidopsis FRP1 seems to be the protein involved not only in the growth and development of plant but also the stress resistance against toxic volatile organic compounds.

Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus

  • Kunthic, Thittaya;Promdonkoy, Boonhiang;Srikhirin, Toemsak;Boonserm, Panadda
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.674-679
    • /
    • 2011
  • Bacillus sphaericus produces mosquito-larvicidal binary toxin composed of BinA and BinB. While BinB is expected to bind to a specific receptor on the cell membrane, BinA interacts to BinB or BinB receptor complex and translocates into the cytosol to exert its activity via unknown mechanism. To investigate functional roles of aromatic cluster in BinA, amino acids at positions Y213, Y214, Y215, W222 and W226 were substituted by leucine. All mutant proteins were highly produced and their secondary structures were not affected by these substitutions. All mutants are able to insert into lipid monolayers as observed by Langmuir-Blodgett trough and could permeabilize the liposomes in a similar manner as the wild type. However, mosquito-larvicidal activity was abolished for W222L and W226L mutants suggesting that tryptophan residues at both positions play an important role in the toxicity of BinA, possibly involved in the cytopathological process after toxin entry into the cells.

Isolation and Characterization of Citrobacter sp. Mutants Defective in Decolorization of Crystal Violet (Crystal vilet 색소분해능이 소실된 Citrobacter sp. 의 분리 및 특성)

  • Kim, Ji-Yoon;Kim, Kyung-Woon;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2000
  • To identify genes involved in the decolorization of crystal violet, we isolated random mutants generated by transponson insertion in crystal violet-declorizing bacterium, Citrobacter sp. The resulting mutant bank yielded mutants with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in the mutants Ctg 2, 5 an 6, whereas two and three bands were detected in Ctg1, 4 and 3, respectively. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein product encoded by ctg 5 was identified as E. coli maltose transproter(Mal G) homolog, whereas the deduced amino acid sequence of the other ctg genes did not show any significant similarity with any DNA or protein sequency. Therefore, these results indicate that the other ctg genes except ctg 5 encode new proteins responsible for decolorization of crystal violet.

  • PDF

Effect of the Ecdysteroid UDP-Glucosyltransferase Gene of the Bombyx mori Nucleopolyhedrovirus on the Development of the Silkworm, Bombyx mori (누에 핵다각체병 바이러스의 Ecdysteroid UDP-glucosyltransferase 유전자가 누에의 발육에 미치는 영향)

  • ;;Shizuo George Kamita
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.105-110
    • /
    • 1998
  • The baculovirus egt gene encodes an ecdysteroid UDP-glucosyltransferase(EGT) which catalyzes the transfer of glucose from UDP-glucose to the insect moltion hormone ecdysteroid resulting in a functionally inactive ecdysteroid. In baculovirus-infected insect larvae, EGT has been shown block molting and pupation. In this study, we compared the development of 4th and 5th instar silkworm, Bombyx mori, larvae injected with either wild-type bombyx mori nucleopolyhedrovirus (BmNPV) or a mutant BmNPV(BmEGTZ) in which the egt gene was disrupted by the insertion of a lacZ gene cassette. Larvae injected with BmEGTZ died roughly 12 h more rapidly compared to indentical larvae infected with BmNPV. In addition, BmEGTZ- infected larvae prematurely stopped feeding and gain less weight compared to BmNPV-infected larvae. In order to investigate why BmEGTZ-infected larvae died more rapidly than BmNPV-infected larvae, the array of hemolymph proteins in BmEGTZ-or BmNPV-infected larvae were analyzed by SDS-PAGE. The hemolymph of BmEGTZ-infected larvae showed virus-specific proteins, including polyhedrin, about 12 h earlier than the hemolymph of BmNPV-infected larvae

  • PDF

Characterization of an Arabidopsis Gene that Mediates Cytokinin Signaling in Shoot Apical Meristem Development

  • Jung, Jae-Hoon;Yun, Ju;Seo, Yeon-Hee;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.342-349
    • /
    • 2005
  • Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.

A Basic Helix-Loop-Helix Transcription Factor Regulates Cell Elongation and Seed Germination

  • Kim, Jin-A;Yun, Ju;Lee, Minsun;Kim, Youn-Sung;Woo, Jae-Chang;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2005
  • Plants are sessile and rely on a wide variety of growth hormones to adjust growth and development in response to internal and external stimuli. We have identified a gene, designated NAN, encoding a basic helix-loop-helix (bHLH) transcription factor that regulates cell elongation and seed germination in plants. NAN has an HLH motif in its C-terminal region but does not have any other discernible homologies to bHLH proteins. A bipartite nuclear localization signal is located close to the HLH motif. An Arabidopsis mutant, nan-1D, in which NAN is activated by the insertion of the 35S enhancer, exhibits growth retardation with short hypocotyls and curled leaves. It is also characterized by reduced seed germination and apical hook formation, symptomatic of GA deficiency or disrupted GA signaling. The phenotypic effects of nan-1D were increased by treatment with paclobutrazol (PAC), an inhibitor of gibberellic acid (GA) biosynthesis. NAN is constitutively expressed throughout the life cycle. Our observations indicate that NAN has a housekeeping role in plant growth and development, particularly in seed germination and cell elongation, and that it may modulate GA signaling.

Isolation of Citrobacter sp. Mutants Defective in Decolorization of Brilliant Green by Transposon Mutagenesis

  • Jang, Moon-Sun;Lee, Young-Mi;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.139-142
    • /
    • 2004
  • To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.

Regulation of SoxR, the superoxide-sensory regulator in Escherichia coli.

  • Lee Joon-Hee;Koo Mi-Sun;Yeo Won-Sik;Roe Jung-Hye
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.24-31
    • /
    • 2000
  • In order to find out SoxR-reducing system in E. coli, we generated Tn10-insertion mutants and screened for constitutive expression of SoxS in a soxS-lacZ fusion strain. One mutation was mapped in rseB, a gene in rseABC (Regulation of SigmaE) operon. The constitutive soxS-expressing phenotype was due to the polar effect on the downstream gene, rseC. RseC is likely to function as a component of SoxR reduction system because SoxR was kept in oxidized form to activate soxS expression in rseC mutant. RseC is an integral membrane protein with an N-terminal cysteine-rich domain in the cytoplasm. The functionally critical cysteines were determined by substitution mutagenesis. The truncated N-terminal domain of RseC reduced the soxS transcription by $50\%$ as judged by in vitro transcription assay. Currently RseC is believed to be a reducing factor for SoxR. However, the mechanism for the reduction needs further investigation.

  • PDF