• Title/Summary/Keyword: insecticidal protein gene

Search Result 43, Processing Time 0.019 seconds

Construction of Recombinant Xanthomonas campestris Strain Producing Insecticidal Protein of Bacillus thuringiensis

  • Shin, Byung-Sik;Koo, Bon-Tag;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.285-289
    • /
    • 1994
  • An insecticidal crystal protein gene, cryIA(c), from Bacillus thuringiensis HD-73 was integrated into the chromosome of a xanthan-producing bacterium, Xanthomonas campestris XP92. The cryIA(c) gene expression cassette was constructed that placed the gene between the trc promoter and rrnB transcriptional terminator. The $lacl^q$ gene was also included to prevent the expression of cryIA(c) gene in X campestris cells. Southem blot analysis confirmed the integration of the cryIA(c) gene expression cassette in chromosome of X campestris XP92 transconjugant. Expression of the insecticidal crystal protein was confirmed by Western blot analysis and bioassay against the larvae of Hyphantria cunea (Lepidoptera: Arctiidae) and Plutella xylostella (Lepidoptera:Plutellidae).

  • PDF

Production of Toxin Protein by Recombinant Escherichia coli with a Thermally Inducible Expression System

  • Jong, Se-Han;Chang, Ho-Nam;Chang, Yong-Keun;Rhim, Seong-Lyul
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 1996
  • Physiological studies on the expression of Bacillus thuringiensis subsp. tenebrionis (Btt) gene coding for insecticidal protein in recombinant Escherichia coli 537 were carried out to identify optimal culture condition. It was necessary to shift culture temperature from 30 to $42^{\circ}C$ to express the gene. Expression of the Btt toxin gene by recombinant E. coli 537 began within one hour after induction. Complex nitrogen sources increased production of the insecticidal protein. The total insecticidal protein was 0.5 g/I when using yeast extract as a complex nitrogen source. Soybean hydrolysate showed apparently the highest induction efficiency. After induction, the cellular content of the insecticidal protein was 5.4 times higher than it had been before induction. The optimal cultivation strategy was found to grow cells for 7hours at $30^{\circ}C$ and then 5-8 hours at $42^{\circ}C$. The optimal cultivation pH for the production of insecticidal protein was 6.5. The Btt toxin produced by the recombinant E. coli 537 was found to have the same level of potency against Colorado potato beetle as the original toxin.

  • PDF

Generation of Transgenic Plant (Nicotiana tabacum var. Petit Havana SR1) harboring Bacillus thuringiensis Insecticidal Crystal Protein Gene, cry II A (Bacillus thuringiensis 살충성 결정단백질 유전자(cry II A)의 형질전환 식물 제작)

  • 이정민;류종석;권무식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.305-311
    • /
    • 1997
  • Bacillus thuringiensis, a gram-positive soil bacterium, is characterized by its ability to produce crystalline inclusions during sporulation. The crystal proteins exhibit a highly specific insecticidal activity. An insecticidal crystal protein (ICP), Cry II A, is specifically toxic to both lepidopteran and dipteran insects. In this study, tobacco plants transformed by the cry II A gene have been generated. The Cry II A crystal protein was purified from E. coli JM103 harboring cry II A gene by differential solubility. The activated Cry II A was prepared by tryptic digestion. The purified protoxin (70 kDa) and the activated toxin (50 kDa) were analyzed by SDS-PAGE. To generate the transgenic tobacco having cry II A gene, the cry II A gene was subcloned to a plant expression vector, pSRL2, having two CaMV 35S promoters. The recombinant plasmid was transformed into tobacco (N. tabacum var. Petit Havana SR1) by Agrobacterium-mediated leaf disc transformation. Through the regeneration, six putative transgenic tobacco plants were obtained and three transformants were confirmed by Southern blot analysis. It has been found that one plant had single copy of cry II A gene, another had two copies of the gene, and the third had a truncated gene. After the immunochemical confirmation of cry II A expression in plants, the transgenic tobacco plants will be used to study the genetics of future generation with the insecticidal crystal protein gene cry II A.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants: 2. Subcloning of B. thuringiensis Insecticidal Protein Gene and Rapid Plantlet Regeneration from Nicotiana tabacum Protoplast and Callus (식물세포에 살충독소유전자의 전이연구: 2. B. thuringiensis 살충독소유전자의 Subcloning과 Nicotiana tabacum의 원형질체와 칼루스로부터 신속재생연구)

  • 이형환;조상현황성희김수영
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.289-297
    • /
    • 1991
  • The insecticidal protein gene in the pKL-20-1 clone derived from Bacillus thuringiensis serovar. kurstaki plasmid was subcloned in the plant shuttle vector, pGA643. The 7.3 kb fragment was cloned in the BglII and Hpal sites of pGA643 vector and expressed in E. coli S17-1, which produced insecticidal proteins killing Bombyx mori larvae. The clone was named pHL-20. The protoplast formation, calli induction and plantlet regeneration of Nicotiana tabacum was carried out. A tremendous number of mesophyll protoplasts of N. tabacum were formed, up to 7$\times$105 protoplast per ml, for 20 hours in darkness in the enzyme solution of 0.5% cellulase and 0.1% macerosin, pH 5.8. The viabilities of the protoplasts were maintained above 80% for 6 days in the media containing 2mg/1 of NAA and 1mg/1 of kinetin. Calli were induced from the protoplasts and leaves of the N. tabacum on MS medium containing 0.5mg/1 BAP. Under the culture conditions the protoplasts underwent repeated cell division into calli. Plantlets were regenerated from callus cultures derived from protoplast and leaves. Shoots were induced in a medium containing 1mg/1 of BAP.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

A Broad-Host-Range Promoter-Probe Vector, pKU20, and Its Use in Promoter Cloning and Expression of Bacillus thuringiensis Crystal Protein Gene in Pseudomonas putida

  • SHIN, BYUNG SIK;BON TAG KOO;SEUNG HWAN PARK;HO YONG PARK;JEONG IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.240-245
    • /
    • 1991
  • We have constructed a promoter-probe vector pKU20 using pKT230, a derivative of broad-host-range plsmid RSF1010, as a base. The pKU20 contains structural gene for aminoglycoside phos-photransferase (aph), without promoter, and a multiple cloning site upstream the aph. Using this vector, a 412base pairs (bp) PstI fragment showing strong promoter activity both in Escherichia coli LE392 and Pseudomonas putida KCTC1644 has been cloned from Pseudomonas fluorescens chromosomal DNA on the basis of streptomycin resistance. The nucleotide sequence of the 412 bp fragment has been determined and the putative - 35 and -10 region was observed. Insecticidal protein gene of Bacillus thuringiensis subsp. kurstaki HD-73 inserted on downstream of the promoterlike DNA fragment was efficiently expressed in E. coli and P. putida. The toxin protein was efficiently synthesized in an insoluble form in both strains.

  • PDF

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF

Integration and Expression of BaciZlus thun'ngiensis Crystal Protein Gene in Chromosomal DNA of Pseudomonas Strains Using Transposon Tn5 (Transposon Tn5에 의한 Bacillus thuringiensis 독소단백질 유전자의 Pseudomonas 내로의 도입 및 발현)

  • 신병식;구본탁;박승환;김정일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 1991
  • The crystal protein gene (cp) of Bacillus tizuringienszs subsp. liuvstaki (B.t.k.) HI173 was subcloned into HanzHI site of central region (Tn5-cp) or BglII site of IS50L region (IS50L-cp) in Tn5, and transposed into the chromosomal DNA of five strains of root-colonizing Pseudomonas. The expression of cp gene in Acwiomoncrs transconjugants was demonstrated by immunoblot analysis and bioassay against larvae of the Hyphantria cunea.

  • PDF

Characterization of an Improved Recombinant Baculovirus Producing Polyhedra that Contain Bacillus thuringiensis Cry1Ac Crystal Protein

  • Kim Jae-Su;Cho Jae-Young;Chang Jin-Hee;Shim Hee-Jin;Roh Jong-Yul;Jin Byung-Ae;Je Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.710-715
    • /
    • 2005
  • A novel recombinant baculovirus, Bactrus, was constructed by the insertion of the Bacillus thuringiensis cry1Ac gene between two polyhedrin genes of Autographa californica nucleopolyhedrovirus (AcNPV) under the control of the polyhedrin gene promoter. Polyhedra produced by Bactrus in insect cells were incorporated with 130 kDa of polyhedrin-Cry1Ac-polyhedrin fusion protein, and 30 kDa of intact polyhedrin, resulting from a homologous recombination between two polyhedrin genes, was also expressed. The insecticidal activity of Bactrus against Spodoptera exigua larvae was similar to that of AcNPV, but it showed significantly higher toxicity towards Plutella xylostella larvae in comparison with that of AcNPV. The expression level of fusion protein and the insecticidal activity of recombinant polyhedra produced by the Bactrus against P. xylostella larvae were decreased after serial passages. In conclusion, the Bactrus had improved insecticidal activity and returned to wild-type AcNPV after several passages.

Expression of Fusion Protein with Autographa californica Nuclear Polyhedrosis Virus Polyhedrin and Bacillus thuringiensis cryIA(c) Crystal Protein in Insect Cells (곤충세포주에서 Autographa californica 핵다각체병 바이러스의 다각체 단백질과 Bacillus thuringiensis cryIA(c) 내독소 단백질의 융합 단백질 발현)

  • 제연호;진병래;박현우;노종열;장진희;우수동;강석권
    • Korean journal of applied entomology
    • /
    • v.36 no.4
    • /
    • pp.341-350
    • /
    • 1997
  • We have now constructed a novel recombinant baculovirus producing fusion protein with Autographa californica nuclear polyhedrosis virus (AcNPV) polyhedrin and Bacillus thuringiensis(Bt) cryIA(c) crystal protein. The fusion protein expressed by the recombinant baculovirus in insect cells was characterized. The N-terminal of cryIA(c) gene of Bt subsp. kurstaki HD-73 was introduced under the control of polyhedrin gene promoter of AcNPV, by fusion in the front of intact polyhedrin gene or by insertion into the HindIII site in polyhedrin gene. The recombinant baculoviruses were named as BtrusI or BtrusII, respectively. Although single transcript from the fusion protein gene was apparently observed. BtrusI was produced the two proteins, 92 kDa fusion protein and only polyhedrin. In addition, fusion protein produced by BtrusI did not form polyhedra. Interestingly, however, the cells infected with BtrusII did not show a 33 kDa polyhedrin band as a cells infected with BtrusI. Cells infected with BtrusII were only produced fusion protein, but the polyhedra formed by fusion protein was not observed. To determine the insecticidal toxicity of fusion protein, therefore, Sf9 cells infected with BtrusI were inoculated to Bombyx mori larvae. Sf9 cells infected with BtrusI that expressed the fusion protein caused larval mortality although the insecticidal toxicity was low. In conclusion, our results clearly demonstrated that the fusion protein with polyhedrin and Bt cryIA(c) crystal protein have a insecticida toxicity.

  • PDF