• Title/Summary/Keyword: input-output linearization

Search Result 136, Processing Time 0.029 seconds

Digital Predistortion Technique for MIMO Transmitters (MIMO 송신기에서 결합한 되먹임 신호에 기반한 디지털 전치왜곡 기법)

  • Jeong, Eui-Rim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1289-1295
    • /
    • 2012
  • An adaptive digital predistortion (PD) technique is proposed for linearization of power amplifiers (PAs) in multiple-input multiple-output (MIMO) transmitters. We consider a PD structure equipped with only one combined feedback path while conventional systems have multiple feedback paths. Hence, the proposed structure is much simpler than that of multiple feedback paths. Based on the structure, a new PD algorithm is derived. The simulation results show that linearization performance of the proposed method is almost the same as the conventional multiple feedback technique while the former is much simpler to implement than the latter.

Rotational Twisted String Actuator with Linearized Output for a Wearable Exoskeleton (입는 외골격 로봇을 위한 선형화된 출력을 갖는 회전형 줄꼬임 기반 구동기)

  • Mehmood, Usman;Popov, Dmitry;Gaponov, Igor;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.524-530
    • /
    • 2015
  • Early wearable robotic devices were big, powerful and manipulator-like. Recently, various applications of wearable robotics have shown a greater demand for lower weight and compliancy. One approach to achieve these objectives is the use of novel actuators such as twisted string actuators. These actuator are very light, quiet, mechanically simple and compliant. Therefore, they can drastically decrease the weight and size of robotic systems such as exoskeletons. However, one drawback of this actuator is its nonlinear transmission ratio, which is established as a ratio between the angle of twisting of the strings and their resulting contraction. In this paper, we propose a transmission mechanism with rotational motion as the output incorporating a twisted string actuator (TSA). The designed mechanism allows the linearization of the relationships between the input and output displacements and forces of a TSA. The proposed design has been validated theoretically and through a set of computer simulations. A detailed analysis of the performance of the proposed mechanism is presented in this paper along with a design guideline.

Robust Control Design Using the ε-sliding Surface for Ball and Beam System (볼-빔 시스템에서의 ε-슬라이딩 평면을 이용한 강인한 제어기 설계)

  • Kim, Jin-Soo;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1444-1448
    • /
    • 2010
  • The ball and beam system is one of the most popular models for studying control systems because of its nonlinearity and several control techniques have been proposed. Sliding mode control is a popular robust control method which rejects the external disturbance. In this paper, we propose a robust controller using the ${\epsilon}$-sliding surface. On the ${\epsilon}$-sliding surface, the system robustness and convergence can be manipulated via a use of ${\epsilon}$. We show the stability analysis and convergence analysis on the ${\epsilon}$-sliding surface. In addition, the experimental results show the validity of the proposed controller.

Input-Output Linearization of Nonlinear Systems via Dynamic Feedback (비선형 시스템의 동적 궤환 입출력 선형화)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.238-242
    • /
    • 2013
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

Position Control of Nonlinear Crane Systems using Dynamic Neural Network (동적 신경회로망을 이용한 비선형 크레인 시스템의 위치제어)

  • Han, Seong-Hun;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.966-972
    • /
    • 2007
  • This paper presents position control of nonlinear three-dimensional crane systems using neural network approach. Such crane system generally includes very complicated characteristic dynamics and mechanical framework such that its mathematical model is expressed by strong nonlinearity. This leads difficulty in control design for the systems. We linearize the nonlinear system model to construct PID control applying well-known linear control theory and then neural network is utilized to compensate system perturbation due to linearization. Thus, control input of the crane system is composed of nominal PID and neural output signals respectively. Our method illustrates simple design procedure, but system perturbation and modelling error are overcome through a neural compensator. As well. adaptive neural control is constructed from online learning. Computer simulation demonstrates our control approach is superior to the classic control systems.

Input Output Linearization Technique Analysis for Capacitive Sensor using Algebraic Loop (대수 루프를 이용한 용량형 센서의 입출력 선형화 기법 연구)

  • Sung, Sang-Kyung;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.564-566
    • /
    • 1999
  • 계측 시스템이나 시스템 식별을 수행할 때 정확히 모델링 되는 플랜트를 가정할 경우, 입출력 신호간 혹은 상태 변수들 사이의 비선형 함수 관계를 유도해 낼 수 있다. 그런데 특히 비선형 함수가 매우 복잡하여 해를 닫힌 형태로 구할 수 없을 경우 고려하는 변수들 양자간의 수학적 모델링을 기반으로 루프내 변수가 방정식의 해로 수렴하는 대수 루프를 구성할 수 있다. 이는 모델을 정확히 아는 시스템에 대하여 출력으로부터 입력을 추정하는 역시스템(inverse system)을 구성하는 것과 유사하다. 이러한 개념을 응용한 간단한 예로 용량형 센서의 입출력 비선형성을 제거해주는 역시스템을 대수 루프를 통하여 구현하였다. 또한 구현한 루프가 항상 유일한 해로 수렴할 수 있도록 하는 조건을 구하였다. 해석된 결과를 바탕으로 구현된 루프가 컴퓨터 시뮬레이션 및 아날로그 회로 실험에서도 잘 동작함을 검증하였다. 시뮬레이션 결과로 보인 잡음에 대한 강인성과 실제 회로 실험 결과는 대수 루프의 구현이 실제 용량형 센서 등에 용이하게 적용될 수 있음을 보여준다.

  • PDF

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

A Linear Power Amplifier Design Using an Analog Feedforward Method

  • Park, Ung-Hee;Noh, Haeng-Sook
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.536-538
    • /
    • 2007
  • We propose and describe the fabrication of a linear power amplifier (LPA) using a new analog feedforward method for the IMT-2000 frequency band (2,110-2,170 MHz). The proposed analog feedforward circuit, which operates without a pilot tone or a microprocessor, is a small and simple structure. When the output power of the fabricated LPA is about 44 dBm for a two-tone input signal in the IMT-2000 frequency band, the magnitude of the intermodulation signals is below -60 dBc and the power efficiency is about 7%. In comparison to the fabricated main amplifier, the magnitude of the third intermodulation signal decreases over 24 dB in the IMT-2000 frequency band.

  • PDF

Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise (측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석)

  • Youn, Jae-Seung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

Design of an intelligent steering control system for four-wheel electric vehicles without steering mechanism (조향 기구가 없는 4륜 전기 구동 차량의 지능형 조향 제어 시스템의 설계)

  • 변상진;박명관;서일홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.12-24
    • /
    • 1997
  • An intelligent steering control system is designed for the steering control of a 4 wheel drive (4WD) electric vehicles without steering mechanism, where the vehicle is assumed to have 3 degree of freedom and input-output feedback linearization is employed. Especially, a fuzzy-rule-based side force estimator is suggested to avoid uncertain highlynonlinearexpression sof relations between side forces and their factors. Also, aneural-network-based predictive compensator is additionally utilized for the vehicle model to be correctly controlled with unstructured uncertainties. The proposed overall control system is numerically shown to be robust against drastic change of the external environments.

  • PDF