• Title/Summary/Keyword: input power

Search Result 5,908, Processing Time 0.033 seconds

A Discrete-Amplitude Pulse Width Modulation for a High-Efficiency Linear Power Amplifier

  • Jeon, Young-Sang;Nam, Sang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.679-688
    • /
    • 2011
  • A new discrete-amplitude pulse width modulation (DAPWM) scheme for a high-efficiency linear power amplifier is proposed. A radio frequency (RF) input signal is divided into an envelope and a phase modulated carrier. The low-frequency envelope is modulated so that it can be represented by a pulse whose area is proportional to its amplitude. The modulated pulse has at least two different pulse amplitude levels in order that the duty ratios of the pulse are kept large for small input. Then, an RF pulse train is generated by mixing the modulated envelope with the phase modulated carrier. The RF pulse train is amplified by a switching-mode power amplifier, and the original RF input signal is restored by a band pass filter. Because duty ratios of the RF pulse train are kept large in spite of a small input envelope, the DAPWM technique can reduce loss from harmonic components. Furthermore, it reduces filtering efforts required to suppress harmonic components. Simulations show that the overall efficiency of the pulsed power amplifier with DAPWM is about 60.3% for a mobile WiMax signal. This is approximately a 73% increase compared to a pulsed power amplifier with PWM.

Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process (폭기공정의 물질전달 계수와 기체 포집율 및 소요동력의 상관관계에 대한 비교연구)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.415-421
    • /
    • 2017
  • As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ${\pm}10.0%$.

Input Current Ripple Improvement on Interleaved Boost Power Factor Corrector Operating in Discontinuous Current Mode (불연속 전류모드로 동작하는 Interleaved 승압형 역률보상 컨버터의 입력전류 리플개선)

  • 허태원;박지호;노태균;김동완;박한석;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a pre-regulator in switched mode power supply. The pre-regulator plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

A New Control Strategy for Input Voltage Sharing in Input Series Output Independent Modular DC-DC Converters

  • Yang, Wei;Zhang, Zhijie;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.632-640
    • /
    • 2017
  • Input series output independent (ISOI) dc-dc converter systems are suitable for high voltage input and multiple output applications with low voltage rating switches. This paper proposes a novel control strategy consisting of one output voltage regulating (OVR) control loop and n-1 (n is the number of modules in the ISOI system) input voltage sharing (IVS) control loops. An ISOI system with the proposed control strategy can be applied to applications where the output loads of each module are the same. Under these conditions, IVS can be achieved and output voltages copying can be realized in an ISOI system. In this control strategy there is only one controller for each module and the design process of the control loops is simple. Since no central controller is needed in the system, modularity of the system is improved. The operation principle of the new control strategy is introduced and the control effect is simulated. Then the output power and voltage characteristics of an ISOI system under this new control strategy are analyzed. The stability of the proposed control strategy is explored base on a Hurwitz criterion, and the design guide line of the control strategy is given. A two module ISOI system prototype is fabricated and tested in the laboratory. Experimental results verify the effectiveness of the proposed control strategy.

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

ACPR Characteristics of wireless LAN Power Amplifier with AM-to-PM Distortion (위상 왜곡에 의한 무선 LAN용 전력증폭기 ACPR 특성)

  • 강광희;정성일;구경헌
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.187-190
    • /
    • 1999
  • In order to predict the effect of power amplifier non-linearity for digital modulated signal, this paper analyses the adjacent channel power ratio(ACPR) with the various AM-to-PM distortion levels. As the phase distortion increases from 0$^{\circ}$ to 12$^{\circ}$ at 1㏈compression point by 2.4$^{\circ}$ step, the input power level which satisfies the required ACPR decreases from 3.5㏈ to 6.5㏈ less than the 1㏈ compression input power.

  • PDF

Control and Design of Input Series-Output Parallel Connected Converter for High Speed Train Power System (고속전철 보조전원 장치용 입력직렬-출력병렬 컨버터의 제어 및 설계)

  • Kim, Jeong-Won;Yu, Jeong-Sik;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.282-290
    • /
    • 2000
  • In this paper, the charge control with the input voltage feedback is proposed for the input series-output series-output parallel connected converter configuration for the high speed train power system application. This control scheme accomplishes the output current sharing for the output-parallel connected modules as well as the input voltage sharing for the input series connected modules for all operating conditions including the transients. It also offers the robustness for the input voltage sharing control according to the component value mismatches among the modules. And this configuration enables the usage of MOSFET for a high voltage system allowing a higher switching frequency for lighter system weight and smaller size. The performance of the proposed scheme is verified through the experimental results.

  • PDF

Systematic Topology Selection Method for Multiple-Input DC-DC Converters

  • Choung, Seung H.;Bae, Sungwoo;Kim, Myungchin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.915-920
    • /
    • 2016
  • A power system designer may have difficulties in choosing a suitable multiple-input converter topology for a specific target application because each multiple-input converter topology presented in the literature has its own advantages and disadvantages. In this perspective, this paper presents a systematic topology selection method for multiple-input converters with three comparison criteria including cost-saving effect, modularity potential and flexibility. Based on these criteria, this paper proposes a strategic flow chart example for choosing a proper multiple-input converter topology. This flow chart will provide a powerful selection tool to a power system designer when he or she chooses a specific multiple-input converter for a given application.

The characteristics of bead welding on steel with process parameter during the laser-arc hybrid welding(II) - Effect of heat input parameters - (강의 레이저-아크 하이브리드 용접시 공정변수에 따른 비드용접특성 (II) - 용접 입열 변수의 영향 -)

  • Kim, Jond-Do;Myung, Gi-Hoon;Park, In-Duck
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • The laser-arc hybrid welding of SS400 steel was carried out with the use of disk laser equipment of 6.6kW maximum power and MAG equipment of pulse mode. Parameter regarding heat input is one of the most important factors that directly affect penetration characteristics and welding defect. Therefore in this study, the effects of laser power, welding speed and current, voltage and pulse correction were investigated. As experiment result, it was found that the lower heat input, the more likely humping bead is formed at the back, and such humping bead could be suppressed by increasing laser power and arc current or decreasing welding speed, thus increasing heat input. Also deep penetration could be achieved by reducing arc voltage or pulse correction parameter in the same welding condition.