• Title/Summary/Keyword: input parameter

Search Result 1,637, Processing Time 0.029 seconds

Design Parameter Identification Using Transfer Function of Liquid Column Vibration Absorber (LCVA) (전달함수를 이용한 LCVA의 설계변수 분석)

  • Lee, Sung-Kyung;Min, Kyung-Won;Chung, Hee-San
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • The purpose of this study is to verify the transfer function of input acceleration and output control force by linearizing a velocity-dependent damping term of Liquid Column Vibration Absorber (LCVA). Analytical and experimental research is conducted to identify natural frequency, damping ratio and participated mass ratio of LCVA with various section ratios of vertical and horizontal areas. Findings obtained experimentally by the shaking table test are compared with analytical findings using optimization technique with constraints. The results indicate that the level of liquid and section ratio of LCVA affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of LCVA decreases, due to turbulence in the elbow of LCVA.

A Study on the FSK Synchronization and MODEM Techniques for Mobile Communication Part I :Design of Quadrature Detector for FSK Demodulation. (이동통신을 위한 FSK동기 및 변복조기술에 관한 연구 I부. FSK 복조를 위한 Quadrature Detector 설계)

  • Kim, Gi-Yun;Choe, Hyeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • This paper presents a simulation model of the Quadrature detector to demodulate FSK signal, which is widely used in wireless paging system for its simple hardware implementation and economics of It fabrication. Quadrature detecter has nonlinear phase characteristic for changes linear changes of input signal frequency. So until now Quadrature detector system analysis remained a difficult problem and performance analysis has not been carried out adequately On these backgrounds, this paper presents the FSK signal demodulation process using Quadrature detector and optimal performance derived from digital simulation technique. First, PSN(Phase Shift Network) which is composed of analog RLC tank circuit is transformed into its equivalent digital transfer function using First-order-hold theorem. Though the demodulated outputs of the Quadrature detector for 4FSK are 4-level signals, only 2 comparators are used and it is shown that optimal performance can be obtained by choosing operation parameter Q value and threshold level decision which are proposed herein.

  • PDF

Study on Phase-Amplitude Characteristics in a Simplex Swirl Injector with Low Frequency Range (저주파 압력섭동 범위 내에서의 단일 스월 인젝터의 진폭-위상 특성 연구)

  • Khil, Tae-Ock;Chung, Yun-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • Generally, combustion instability is generated by the mutual coupling between the heat release and the acoustic pressure in the combustor. On the occasion, the acoustic pressure generates the oscillation of the mass flow rate of propellant injected from injector, and this oscillation again affects combustion in the combustor. So, the dynamic characteristics of the injector have been studied to control combustion instability using injector itself in Russia from 1970's. In order to study injector dynamics, a mechanical pulsator for forced pressure pulsation is produced and the method to quantify the mass flow rate of the propellant that is oscillating at the exit of the injector is developed. With the pulsator and the method, pulsating values of the mass flow rate, pressure, liquid film thickness, and axial velocity generated at the exit of the simplex swirl injector are measured in real time. And phase-amplitude characteristics of each parameter are analyzed using these pulsating values acquired at the exit of the simplex swirl injector.

Nonlinear Model-Based Robust Control of a Nuclear Reactor Using Adaptive PIF Gains and Variable Structure Controller (적응 PIF Gain 및 가변구조 제어기를 사용한 비선형 모델에 의한 원자로의 Robust Control)

  • Park, Moon-Ghu;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.110-124
    • /
    • 1993
  • A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods.

  • PDF

The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters (한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형)

  • 윤강훈;신현민
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.55-69
    • /
    • 1994
  • In order to enhance the short-term flood forecasting accuracy of the water level of the In-do Brdg., three statistical flood forecasting models are presented models are presented and the forecasting accuracies and stabilities of the models are studied. The presented statistical models are as follows: The multi-input model by the multi-regression analysis between the water level of the In-do Brdg. and the influence parameters(Model MM). The two-level multi parameter model according to the water level tendency(Model 2MP). Among the three models, the Model MM showed the lowest forecasting accuracy, the model 2MP showed the highest forecasting accuracy, although this model sometimes became unstable and diverged. The model MMP forecasted the flood less accurately than model 2MP, but it gave more stable forecasting results.

  • PDF

The Power characteristic of IPT system for electric railway vehicle by various air-gap (공극변화에 따른 전기궤도차량용 유도급전시스템의 공급전원 특성)

  • Cho, Gi-Hyun;Han, Kyung-Hee;Lee, Byung-Song;Choi, Kyu-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.928-934
    • /
    • 2006
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the electric railway vehicle system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance.

  • PDF

FracSys와 UDEC을 이용한 사면 파괴 양상 분석 통계적 절리망 생성 기법 및 Monte Carlo Simulation을 통한 사면 안정성 해석

  • 김태희;최재원;윤운상;김춘식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.651-656
    • /
    • 2002
  • In general, the most important problem in slope stability analysis is that there is no definite way to describe the natural three-dimensional Joint network. Therefore, the many approaches were tried to anlayze the slope stability. Numerical modeling approach is one of the branch to resolve the complexity of natural system. UDEC, FLAC, and SWEDGE are widely used commercial code for the purpose on stability analysis. For the purpose on the more appropriate application of these kind of code, however, three-dimensional distribution of joint network must be identified in more explicit way. Remaining problem is to definitely describe the three dimensional network of joint and bedding, but it is almost impossible in practical sense. Three dimensional joint generation method with random number generation and the results of generation to UDEC have been applied to settle the refered problems in field site. However, this approach also has a important problem, and it is that joint network is generated only once. This problem lead to the limitation on the application to field case, in practical sense. To get rid of this limitation, Monte Carlo Simulation is proposed in this study 1) statistical analysis of input values and definition of the applied system with statistical parameter, 2) instead of the consideration of generated network as a real system, generated system is just taken as one reliable system, 3) present the design parameters, through the statistical analysis of ouput values Results of this study are not only the probability of failure, but also area of failure block, shear strength, normal strength and failure pattern, and all of these results are described in statistical parameters. The results of this study, shear strength, failure area, pattern etc, can provide the direct basement on the design, cutoff angle, support pattern, support strength and etc.

  • PDF

Physicochemical Effect on Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화의 물리·화학적 인자 평가)

  • Park, Seyong;Yoo, Euisang;Chung, Daihyuck;Lee, Jin;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.27-36
    • /
    • 2010
  • This study was conducted to evaluate physicochemical parameters; temperature, pH, C/N ratio, water content, organic contents and volume in a pilot-scale(capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each target material was carried out by the first fermentation(organic waste + seed culture) and the second one(organic waste + seed culture + recycle compost), respectively. During composting, only with supply of air and mixing, the temperature increased $90{\sim}105^{\circ}C$ after every mixing in both periods. The changes of pH, $O_2$, $CO_2$ and $NH_3$ represented typical organic decomposition pattern by microorganisms. Also, all other physicochemical parameters of ultra thermophilic aerobic composting process showed similar or better performance than these of general aerobic composting. Heavy metal concentration of fermented compost adapted to compost fertilizer regulation standard in the heavy metal and hazardous analysis.

A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding (수평자세 맞대기 TIG 초층용접에서 최적용접조건의 선정에 관한 연구)

  • Jung, Sung Hun;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.321-327
    • /
    • 2017
  • In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a $2^{nd}$ regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

Characteristics analysis of time sharing method VVVF type high frequency resonant inverter (시분할 방식 VVVF형 고주파 공진 인버터의 특성해석)

  • 조규판;원재선;남승식;심광렬;배영호;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.20-28
    • /
    • 2002
  • This paper describes the time sharing type high frequency resonant inviter can be used as power of induction heating. This closed inverter can be obtained output frequency three times than switching frequency by composing three unit inviter of conventional Half-Bridge serial resonant inverter in parallel with input power source also, this reduce switching loss because it has ZVS function. The analysis of the proposed circuit is generally described by using the normailized proposed parameters. The principle of basic operating and the its charasteristics are extimated by the parameters such as switching frequency($\mu$), the variation of Phase angle($\phi$) of Phase-shift. Experimental results are presented to verify theoretical discussion. This preposed inverter will be able to be prastically used as a power supply in various fields as induction, heating application, DC-DC converter etc.