• Title/Summary/Keyword: input parameter

Search Result 1,644, Processing Time 0.036 seconds

The Fault Tolerant Evaluation Model due to the Periodic Automatic Fault Detection Function of the Safety-critical I&C Systems in the Nuclear Power Plants (원전 안전필수 계측제어시스템의 주기적 자동고장검출기능에 따른 고장허용 평가모델)

  • Hur, Seop;Kim, Dong-Hoon;Choi, Jong-Gyun;Kim, Chang-Hwoi;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.994-1002
    • /
    • 2013
  • This study suggests a generalized availability and safety evaluation model to evaluate the influences to the system's fault tolerant capabilities depending on automatic fault detection function such as the automatic periodic testings. The conventional evaluation model of automatic fault detection function deals only with the self diagnostics, and supposes that the fault detection coverage of self diagnostics is always constant. But all of the fault detection methods could be degraded. For example, the periodic surveillance test has the potential human errors or test equipment errors, the self diagnostics has the potential degradation of built-in logics, and the automatic periodic testing has the potential degradation of automatic test facilities. The suggested evaluation models have incorporated the loss or erroneous behaviors of the automatic fault detection methods. The availability and the safety of each module of the safety grade platform have been evaluated as they were applied the automatic periodic test methodology and the fault tolerant evaluation models. The availability and safety of the safety grade platform were improved when applied the automatic periodic testing. Especially the fault tolerant capability of the processor module with a weak self-diagnostics and the process parameter input modules were dramatically improved compared to the conventional cases. In addition, as a result of the safety evaluation of the digital reactor protection system, the system safety of the digital parts was improved about 4 times compared to the conventional cases.

The New Active Voltage Clamp ZVS-PWM Resonant High-frequency Inverter (새로운 액티브 전압 클램프 ZVS-PWM 공진 고주파 인버터)

  • Ahn, Yong-Wie;Kim, Hong-Shin;Mun, Sang-Pil;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.188-193
    • /
    • 2017
  • In this paper, a ZVS-PWM high-frequency inverter with a PWM control function is applied to commercial system 220[Vrms], and a resonator type ZVS-PWM high-frequency inverter circuit with a fixed-two methods were proposed. The parameters of the transformer model equivalent circuit of a copier fixing device, which is an essential element in the parameter optimization of the proposed circuit, are obtained by using a high-frequency amplifier and its frequency characteristics are described. The proposed method compared to the existing single-ended ZVS-PFM high frequency inverter can suppress the voltage and current peak value of the power semiconductor switching device and reduce the switching loss. The efficiency of the proposed method itself is 98[%] at rated power output. Also, the efficiency of 96[%] can be obtained even at low output, so that the proposed high frequency inverter is very efficient inverter. The total efficiency from the commercial AC input to the inverter output is 93[%] at rated, which is considered efficient for use in copying machines. In addition, the diode bridge loss accounts for the largest portion of the overall system efficiency distribution. On the other hand, the nonparallel filter has a very low loss.

Current Sensorless Three Phase PWM AC/DC Boost Converter with Unity Power Factor (전류센서리스 단위역률 3상 PWM AC/DC Boost 컨버터)

  • 천창근;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • Diode rectifier which can't be controlled output voltage and phase control converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, three phase PWM(Pulse Width Modulation) AC/DC boost converter is studied to solve these problems. The characteristics of a proposed converter are to control the phase of current without current sensor as a very simple control algorithm using circuit parameters only and to apply sinusoidal PWM method with fixed switching frequency due to a difficult design of input filter and switching device. We simulate for the proposed algorithm that high power factor is achieved and DC link voltage has fast dynamic response without ripple in rectifying and regenerating operation. As a result of experiment with circuit parameter(inductor, capacitor) decided in simulation, the proposed converter had high power factor and reduction of low order harmonics as against diode rectifier.

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

A Design of Reference Model Following Fuzzy Control System for Boiler-Turbine Equipment (보일러-터빈 설비에 대한 기준모델 추종 퍼지 제어시스템의 설계)

  • 정호성;황창선;황현준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, a design method of the boiler-turbine control system in the coal fired power plant is proposed. We need to control electric output and drum pressure and water level in drum to guarantee stable operation and save energy for generating electricity and decrease air pollution in the boiler-turbine system. This boiler-turbine control system is composed of reference model part and model following part. The multivariable boiler-turbine system is separated into 3 SISO(Single Input Single Output) systems applying the concept of relative gain matrix. Each 3 reference models for separated boiler-turbine system are composed of 1st order nominal plant and hysteresis integral control system and they make good dy¬namic response with no overshoot and fast rising time. Each fuzzy controller to follow as close as possible to the response of each reference model is designed. The robustness and the good tracking property can be achieved using 5150 fuzzy controllers when there are modeling errors, disturbances and parameter pertur¬bations. The effectiveness of the proposed design method is verified through simulations.

  • PDF

Development and Evaluation of Urban Canopy Model Based on Unified Model Input Data Using Urban Building Information Data in Seoul (서울 건물정보 자료를 활용한 UM 기반의 도시캐노피 모델 입력자료 구축 및 평가)

  • Kim, Do-Hyoung;Hong, Seon-Ok;Byon, Jae-Yong;Park, HyangSuk;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.417-427
    • /
    • 2019
  • The purpose of this study is to build urban canopy model (Met Office Reading Urban Surface Exchange Scheme, MORUSES) based to Unified Model (UM) by using urban building information data in Seoul, and then to compare the improving urban canopy model simulation result with that of Seoul Automatic Weather Station (AWS) observation site data. UM-MORUSES is based on building information database in London, we performed a sensitivity experiment of UM-MOURSES model using urban building information database in Seoul. Geographic Information System (GIS) analysis of 1.5 km resolution Seoul building data is applied instead of London building information data. Frontal-area index and planar-area index of Seoul are used to calculate building height. The height of the highest building in Seoul is 40m, showing high in Yeoido-gu, Gangnam-gu and Jamsil-gu areas. The street aspect ratio is high in Gangnam-gu, and the repetition rate of buildings is lower in Eunpyeong-gu and Gangbuk-gu. UM-MORUSES model is improved to consider the building geometry parameter in Seoul. It is noticed that the Root Mean Square Error (RMSE) of wind speed is decreases from 0.8 to 0.6 m s-1 by 25 number AWS in Seoul. The surface air temperature forecast tends to underestimate in pre-improvement model, while it is improved at night time by UM-MORUSES model. This study shows that the post-improvement UM-MORUSES model can provide detailed Seoul building information data and accurate surface air temperature and wind speed in urban region.

The economic effects of working hours reduction in Korea (법정근로시간 단축의 경제적 효과)

  • Shin, Kwanho;Shin, Donggyun;Yoo, Gyeongjoon
    • Journal of Labour Economics
    • /
    • v.25 no.3
    • /
    • pp.1-34
    • /
    • 2002
  • This paper investigates the effects of hours reduction on growth, investment, and consumption as well as employment. We adopt the basic framework of the indivisibility of labor developed by Hansen (1985) and Rogerson (1988) and extend it by allowing heterogeneity of workers in productive efficiency. On the basis of monthly panel data constructed from Economically Active Population Surveys and Household Income and Expenditure Surveys, we estimate the value of productive efficiency parameter of newly hired workers relative to existing workers by considering differences between the two groups in unobservable as well as observable worker characteristics. Numerical simulation of steady states demonstrates that reduction of statutory weekly hours from 44 to 40 leads to a rise in employees by 4.9 percent. However, GNP, investment, and consumption are all reduced by 2.03 percent, which is attributed to reduction in the amount of effective labor input, which in turn comes from reduction of actual average hours and productivity differences between exiting and newly hired workers.

  • PDF

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.

Zoom Lens Distortion Correction Of Video Sequence Using Nonlinear Zoom Lens Distortion Model (비선형 줌-렌즈 왜곡 모델을 이용한 비디오 영상에서의 줌-렌즈 왜곡 보정)

  • Kim, Dae-Hyun;Shin, Hyoung-Chul;Oh, Ju-Hyun;Nam, Seung-Jin;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.299-310
    • /
    • 2009
  • In this paper, we proposed a new method to correct the zoom lens distortion for the video sequence captured by the zoom lens. First, we defined the nonlinear zoom lens distortion model which is represented by the focal length and the lens distortion using the characteristic that lens distortion parameters are nonlinearly and monotonically changed while the focal length is increased. Then, we chose some sample images from the video sequence and estimated a focal length and a lens distortion parameter for each sample image. Using these estimated parameters, we were able to optimize the zoom lens distortion model. Once the zoom lens distortion model was obtained, lens distortion parameters of other images were able to be computed as their focal lengths were input. The proposed method has been made experiments with many real images and videos. As a result, accurate distortion parameters were estimated from the zoom lens distortion model and distorted images were well corrected without any visual artifacts.

A Study on the Effect Analysis Influenced on the Advanced System of Moving Object (이동물체가 정밀 시스템에 미치는 영항분석에 관한 연구)

  • Shin, Hyeon-Jae;Kim, Soo-In;Choi, In-Ho;Shon, Young-Woo;An, Young-Hwan;Kim, Dae-Wook;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • In this paper, we analyzed the mr detection and the stability of the object tracking system by an adaptive stereo object hacking using region-based MAD(Mean Absolute Difference) algorithm and the modified PID(Proportional Integral Derivative)-based pan/tilt controller. That is, in the proposed system, the location coordinates of the target object in the right and left images are extracted from the sequential stereo input image by applying a region-based MAD algorithm and the configuration parameter of the stereo camera, and then these values could effectively control to pan/tilt of the stereo camera under the noisy circumstances through the modified PID controller. Accordingly, an adaptive control effect of a moving object can be analyzed through the advanced system with the proposed 3D robot vision, in which the possibility of real-time implementation of the robot vision system is also confirmed.