• Title/Summary/Keyword: input devices

Search Result 1,225, Processing Time 0.028 seconds

A Pilot Study on the Control Performance of Foot-Controlled Mouse Devices for the Nondisabled People

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.175-184
    • /
    • 2016
  • Objective: In this study, two types of foot-controlled mouse devices are compared with a hand mouse in the input tasks requiring repetitively switching between a keyboard and a mouse. Background: Foot-controlled mouse devices have been developed for persons with impairments in the mobility of their hands. However, some researchers insisted that the foot-controlled mouse devices could be effectively used by the persons with no limits to their hand mobility. There are needs to investigate the efficiency of the foot-controlled mouse devices, when they are used by the nondisabled people. Method: Participants conducted the input tasks, requiring repetitive switches between a keyboard and a computer mouse. The used computer mouse devices were two types of foot-controlled mouse and a typical hand mouse. Participants performed three types of input task for five days and three types of task performance were measured; the number of completed input tasks within a given practice time, subjective satisfaction level and the time wasted for the mouse control. Results: For five days, the performance of input tasks sharply increased in input tasks by foot-controlled mouse devices rather than a hand mouse. After five days, the level of satisfaction on the foot-controlled mouse devices approached to about 76% of a hand mouse satisfaction level. The control time of the foot-controlled mouse devices also approached to about 109% of a hand mouse control time. Conclusion: After only five-day practice, the input task performance by foot-controlled mouse devices approached to that of a hand mouse. This result may suggest that the foot-controlled mouse devices can be effectively used as an alternative input device for the nondisabled people, if input tasks are easy and enough practice time is provided. Application: The results of this study might help to design foot-controlled mouse devices and to expend the usage of them.

A Comparative Analysis on Competitiveness for Computer Parts Industry between Korea and China (한.중 컴퓨터 부품산업의 경쟁력 비교분석)

  • Kim, Ji-Yong;Lee, Chang-Hyeon
    • International Commerce and Information Review
    • /
    • v.9 no.2
    • /
    • pp.423-439
    • /
    • 2007
  • The purpose of this study was to analyze market competitiveness of Korean and Chinese computer parts industry in the between two countries' market by using Index of Export Bias and Market Comparative Advantage Index. For attaining the purpose of study, we classified the computer parts which exported to the two countries' market and the imported products as the memory devices and input/output peripheral devices. Analyzing period was 2001-2006. The analysis of Korean results of Index of Export Bias indicated that memory devices represented low overall numerical value and the Chinese results of Index of Export Bias indicated that memory devices represented high gradual numerical value. On the other hand, Korean input/output peripheral devices have been increasing steadily for analysis period and China input/output peripheral devices have been decreasing steadily for analysis period. Additional results indicated that the Korean and China computer parts which gained market competitiveness between two countries market were as follows. Korean memory devices have been losing competitiveness in the China market steadily and Chinese memory devices have been acquire competitiveness in the Korean market gradually. In input/output peripheral devices case, Korean products represented powerful competitiveness in the China market and Chinese products have been gaining competitiveness in the Korea market.

  • PDF

A Study on Player's Immersion by Difference of Input Control Devices in Computer Games (컴퓨터 게임에서 조작도구의 차이가 플레이어의 몰입에 미치는 영향 연구)

  • Yang, Shin-Duk
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • This study sets a hypothesis on that the use of input control devices, which are similar to what we experience in real life, to control activities in games increases players' immersion rate, and compares general input control devices with dedicated input control devices in order to show appropriate results. Accordingly the process of the study is derived and the hypothesis is substantiated by understanding the relationship between game controlling activities and immersion rate. Overall satisfaction survey result on the use of dedicated devices shows that most players responded that they felt immersed enough in games when used dedicated devices and were highly satisfied. The use of the dedicated devices had positive impact on the increase of immersion rate in general. In order to increase immersion rate with controlling activities in games, the use of input control devices that are easy to handle and enable precise control is required, which shows that it will bring more fun and more increased immersion rate.

"Least Gain or Wrist Pain": A comparative study about performance and usability of mouse, trackball, and touchpad

  • Yunsun Alice Hong;Kwanghee Han
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.298-309
    • /
    • 2023
  • The mouse as an input device has undoubtedly brought convenience to users due to its intuitiveness and simplicity, but it also brought unprecedented issues such as carpal tunnel syndrome (CTS). As a result, the necessity of alternative input devices that put less strain on the wrist, while still providing the convenience of a conventional mouse, has emerged. Unfortunately, there have been several research about alternative devices to replace a mouse, however, they showed inconsistent results. This study suggests that those inconsistent results may stem from the type and the difficulty of tasks used in previous studies. Therefore, we designed this study to compare the performance and perceived workload of three input devices (Mouse/Trackball/Touchpad) in each condition in terms of task type (Targeting/Tracking) and difficulty level (Easy/Hard). The results indicated that there were significant performance differences and no significant workload differences among the three devices, and the interactions were observed in some conditions. These results can provide users with practical guidelines to choose the optimal input device according to their needs or purpose.

A Study on Color Management of Input and Output Device in Electronic Publishing (II) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (II))

  • Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2007
  • The input and output device requires precise color representation and CMS (Color Management System) because of the increasing number of ways to apply the digital image into electronic publishing. However, there are slight differences in the device dependent color signal among the input and output devices. Also, because of the non-linear conversion of the input signal value to the output signal value, there are color differences between the original copy and the output copy. It seems necessary for device-dependent color information values to change into device-independent color information values. When creating an original copy through electronic publishing, there should be color management with the input and output devices. From the devices' three phases of calibration, characterization and color conversion, the device-dependent color should undergo a color transformation into a device-independent color. In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After undergoing a color transformation in the input and output devices, the best results were created when the original target underwent a color transformation by the scanner and digital camera input device by the linear multiple regression, and the LCD output device underwent a color transformation by the GOG model.

  • PDF

IoT Device Testing for Efficient IoT Device Framework

  • Gong, Dong-Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2020
  • IoT devices frequently require input resources to communicate with various sensors or IoT platforms. IoT device wastes a lot of time as idle time or waiting time to check the data of the input resource and use the input resource. In addition, IoT devices use various input resources. We compares and analyzes input idle time and input waiting time generated from hardware serial input resource, software serial input resource, digital port input resource, and analog port input resource using Arduino widely used as IoT device. In order to design the IoT device framework, it is necessary to understand the characteristics of input resources and to design them to minimize unnecessary input idle time and input waiting time. The analog input wait time has a much larger input wait time than the digital input wait time, so it must be designed to receive analog information periodically at the appropriate timing. The characteristics of the input resources analyzed in this way help to design an efficient IoT device.

Human performance evaluation of the three-dimensional input devices in virtual environment system (가상현실 시스템에서의 3차원 입력장치의 인간성능 평가)

  • Park, Jae-Hui;Park, Gyeong-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.49-61
    • /
    • 2000
  • An experiment was designed to evaluate Fitts' law for the three-dimensional virtual pointing task and to compare the three input devices; Spaceball, Spacemouse, and 3D-Mouse. The result showed that Fitts law fitted poorly for the three-dimensional pointing tasks with relatively low coefficients of determinant. Three reasons, high degree-of-freedom, dynamic egocentric viewpoint change, and clutching problem were discussed to explain the poor fitness of Fitts' law. In terms of device comparison, the 3D-Mouse was superior to the other input devices. Also, the stereoscopic display significantly increased the performance. The results of this study can be used for the design of virtual control tasks and the selection of suitable input devices.

  • PDF

Gesture Input as an Out-of-band Channel

  • Chagnaadorj, Oyuntungalag;Tanaka, Jiro
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.92-102
    • /
    • 2014
  • In recent years, there has been growing interest in secure pairing, which refers to the establishment of a secure communication channel between two mobile devices. There are a number of descriptions of the various types of out-of-band (OOB) channels, through which authentication data can be transferred under a user's control and involvement. However, none have become widely used due to their lack of adaptability to the variety of mobile devices. In this paper, we introduce a new OOB channel, which uses accelerometer-based gesture input. The gesture-based OOB channel is suitable for all kinds of mobile devices, including input/output constraint devices, as the accelerometer is small and incurs only a small computational overhead. We implemented and evaluated the channel using an Apple iPhone handset. The results demonstrate that the channel is viable with completion times and error rates that are comparable with other OOB channels.

A Wireless Glove-Based Input Device for Wearable Computers

  • An, Sang-Sup;Park, Kwang-Hyun;Kim, Tae-Hee;Jeon, Jae-Wook;Lee, Sung-Il;Choi, Hyuck-Yeol;Choi, Hoo-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1633-1637
    • /
    • 2003
  • Existing input devices for desktop computers are not suitable for wearable computers because they are neither easy to carry nor convenient to use in a mobile working environment. Different input devices for wearable computers must be developed. In this paper, a wireless glove-based input device for wearable computers is proposed. The proposed input device consists of a pair of chording gloves. Its keys are mounted on the fingers and their chording methods are similar to those of a Braille keyboard. RF (Radio Frequency) and IrDA (Infrared Data Association) modules are used to make the proposed input device wireless. Since the Braille representation for numbers and characters is efficient and has been well established for many languages in the world, the proposed input device may be one of good input devices to computers. Furthermore, since the Braille has been used for visually impaired people, the proposed one can be easily used as an input device to computers for them.

  • PDF

Tangible Interaction : Application for A New Interface Method for Mobile Device -Focused on development of virtual keyboard using camera input - (체감형 인터랙션 : 모바일 기기의 새로운 인터페이스 방법으로서의 활용 -카메라 인식에 의한 가상 키보드입력 방식의 개발을 중심으로 -)

  • 변재형;김명석
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • Mobile devices such as mobile phones or PDAs are considered as main interlace tools in ubiquitous computing environment. For searching information in mobile device, it should be possible for user to input some text as well as to control cursor for navigation. So, we should find efficient interlace method for text input in limited dimension of mobile devices. This study intends to suggest a new approach to mobile interaction using camera based virtual keyboard for text input in mobile devices. We developed a camera based virtual keyboard prototype using a PC camera and a small size LCD display. User can move the prototype in the air to control the cursor over keyboard layout in screen and input text by pressing a button. The new interaction method in this study is evaluated as competitive compared to mobile phone keypad in left input efficiency. And the new method can be operated by one hand and make it possible to design smaller device by eliminating keyboard part. The new interaction method can be applied to text input method for mobile devices requiring especially small dimension. And this method can be modified to selection and navigation method for wireless internet contents on small screen devices.

  • PDF