• Title/Summary/Keyword: inorganic oxide

Search Result 299, Processing Time 0.028 seconds

Fabrication and Characteristics of High-performance Doped-$SnO_2$ Thin Films for Explosive Gas Sensor

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • Long term stability, sensitization in air, and gas sensing behaviors of tin oxide films were investigated with doping of antimony and palladium. The tin oxide films were prepared on a Corning glass by reactive rf sputtering method and tested for detection of hydrogen gas. Sb-doping improved a long-term stability in the base resistance of $SnO_2$ film sensor. A small amount of Pd doping caused the optimum sensor operating temperature to reduce and also enhanced the gas sensitivity, compared with the undoped $SnO_2$ film. Gas sensitivity depended largely on the film thickness. The important sensitization reactions for sensor operating were $(O_{2ads})+e^-\;{\rightarrow}\;2(O_{ads})^-$ on the surface of $SnO_2$ film at elevated temperature in air and a followed reaction of hydrogen atoms with $(O_{ads})^-$ ions.

  • PDF

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF

Strength properties of magnesium oxide matrix according to type of phosphate (인산염 종류에 따른 산화마그네슘 경화체의 강도 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.79-80
    • /
    • 2018
  • Recently, the interest in remodeling of new and old buildings is increasing worldwide. As a result, the frequency of use of architectural adhesives has increased. Currently, adhesives used in buildings are made of organic materials in most cases, and epoxy resin adhesives are most widely used. However, epoxy resin adhesives contain formaldehyde and VOCs in the room during construction, which can cause sick house syndrome. In case of building fire, it may cause damage due to carbon monoxide generated from organic materials. It is urgent to study the problem of epoxy fill adhesive made of such organic materials. Therefore, the purpose of this study is to investigate the effect of the adhesion of epoxy resin adhesive, which is a problem of epoxy resin adhesive, which is an existing organic adhesive by using inorganic materials such as magnesia and phosphate, And the inorganic adhesive which does not emit the release amount as an inorganic material.

  • PDF

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

Study on Heat-shield Property of Surface-treated Inorganic Oxide Particles (표면처리된 무기산화물 입자의 열차단 특성에 관한 연구)

  • Kim, Dong Ho;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • In this study, we produced heat-shield coating materials using surface-treated Ga-doped ZnO (GZO) and investigated the dispersity of particle, visible light transmittance, ultraviolet light cut off, infrared light cut-off, heat-shielding property by surface-treating compounds and treatment conditions. In the case of using IPA or acryl binder for heat-shield coating, the dispersity of inorganic oxide particles was poor but in the case of using surface-treated inorganic oxide particles by hybrid compound having urethane (urea) group, acryl group and silica, dispersity of particle, visible light transmittance and haze were improved. We used the measurement kit and sunlamp for measuring heat-shielding property and confirmed that the internal temperature of the measurement kit using heat-shield film was lower more than $4.8^{\circ}C$ in comparison with using PET film for itself.

Fabrication of Micro Solid Oxide Fuel Cell by Thin Film Processing Hybridization: I. Multilayer Structure of Sputtered YSZ Thin Film Electrolyte and Ni-Based Anodes deposited by Spray Pyrolysis (박막공정의 융합화를 통한 초소형 고체산화물 연료전지의 제작: I. Spray Pyrolysis법으로 증착된 Ni 기반 음극과 스퍼터링으로 증착된 YSZ 전해질의 다층구조)

  • Son, Ji-Won;Kim, Hyoung-Chul;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon;Bieberle-Hutter, A.;Rupp, J.L.M.;Muecke, U.P.;Beckel, D.;Gauckler, L.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.589-595
    • /
    • 2007
  • Physical properties of sputtered YSZ thin film electrolytes on anode thin film by spray pyrolisis has been investigated to realize the porous electrode and dense electrolyte multilayer structure for micro solid oxide fuel cells. It is shown that for better crystallinity and density, YSZ need to be deposited at an elevated temperature. However, if pure NiO anode was used for high temperature deposition, massive defects such as spalling and delamination were induced due to high thermal expansion mismatch. By changing anode to NiOCGO composite, defects were significantly reduced even at high deposition temperature. Further research on realization of full cells by processing hybridization and cell performance characterization will be performed in near future.

Electrically Conductive Silicon Carbide without Oxide Sintering Additives

  • Frajkorova, Frantiska;Lences, Zoltan;Sajgalik, Pavol
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.342-346
    • /
    • 2012
  • This work deals with the preparation of dense SiC based ceramics with high electrical conductivity without oxide sintering additives. SiC samples with different content of conductive Ti-NbC phase were hot pressed at $1850^{\circ}C$ for 1 h in Ar atmosphere under mechanical pressure of 30 MPa. The conductive phase is a mixture of Ti-NbC in weight ratio of Ti/NbC 1:4. Composite with 50% of conductive Ti-NbC phase showed the highest electrical conductivity of $30.6{\times}10^3\;S{\cdot}m^{-1}$, while the good mechanical properties of SiC matrix were preserved (fracture toughness 4.5 $MPa{\cdot}m^{1/2}$ and Vickers hardness 18.7 GPa). The obtained results show that use of NbC and Ti as sintering and also electrically conductive additives is appropriate for the preparation of SiC-based composite with sufficient electrical conductivity for electric discharge machining.

Electrochemical Characteristics of Silicon-Doped Tin Oxide Thin Films (실리콘을 첨가한 주석 산화물 박막의 전기 화학적 특성)

  • Lee, Sang-Heon;Park, Geon-Tae;Son, Yeong-Guk
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.240-247
    • /
    • 2002
  • Tin oxide thin films doped with silicon as anodes for lithium secondary battery were fabricated by R.F. magnetron sputtering technique. The electrochemical results showed that the irreversible capacity was reduced during the first discharge/charge cycle, because the audition of silicon decreased the oxidic state of Tin. Capacity was increased with the increase of substrate temperature, however decreased with the increase of RTA temperatures. The reversible capacity of thin films fabricated under the substrate temperature of $300^{\circ}C$ and the Ar:$O_2$ratio of 7:3 was 700mA/g.

High-Performance Amorphous Indium-Gallium Zinc Oxide Thin-Film Transistors with Inorganic/Organic Double Layer Gate Dielectric

  • Lee, Tae-Ho;Kim, Jin-U;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.465-465
    • /
    • 2013
  • Inorganic 물질인 SiO2 dielectric 위에 organic dielectric PVP (4-vinyphenol)를 spin coating으로 올려, inorganic/organic dielectric 형태의 double layer구조로 High-performance amorphous indiumgallium zinc oxide thin-film transistors (IGZO TFT)를 제작하여 보았다. SiO2 dielectric을 buffer layer로 80 nm, PVP는 10Wt% 400 nm로 구성하였으며, 200 nm single SiO2 dielectric과 동일한 수준의 leakage current 특성을 MIM Capacitor 구조를 통해서 확인할 수 있었다. 이 소자의 장점은 용액공정의 도입으로 공정 시간의 단축 및 원가 절감을 이룰 수 있으며, dielectric과 channel 사이의 균일한 interface의 형성으로 interface trap 개선 및 Yield 향상의 장점을 갖는다. 우리는 실험을 통해서 SiO2 buffer layer가 수직 electric field에 의한 leakage current을 제어하고, PVP dielectric은 interface를 개선하는 것을 확인하였다. Vth의 negative shift 및 slope의 향상으로 구동전압이 줄어들고, 균일한 I-V Curve 형성을 통해서 Process Yield의 향상을 확인하였다.

  • PDF

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF