• Title/Summary/Keyword: inorganic nanofiber

Search Result 4, Processing Time 0.02 seconds

Influence of Particles on the Electrical Properties of Electrospun PVDF Fiberwebs (전기방사된 PVDF 섬유웹의 전기적 특성에 있어 입자의 영향)

  • Lee, Young-Soo;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.271-272
    • /
    • 2003
  • Electrospinning is a novel process for forming fibers with submicron scale diameters through the action of electrical force. In the previous study, we performed study on the ultrafine PVDF nanofiber production in the stable spinning condition. Recently it would be great interest to fabricate IP(inorganic particle) assemblies in nanofibe. since such IP/nanofiber hybrid materials might be used in a nonwoven form as nanowires, medical gauges for bums healing and cell growing, sensors, chemical and gas filteration. (omitted)

  • PDF

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Characteristic Change of PVDF-$SiO_2$ Composite Nanofibers with Different Thermal Treatment Temperature (열처리 온도에 따른 PVDF-$SiO_2$ 복합나노섬유의 특성 변화)

  • Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • Composite nanofibers were prepared by electrospinning and thermal treatment from poly (vinylidene fluoride) (PVDF)-$SiO_2$ blend solution. The nanofibers were stacked on layers to produce fully interconnected pores. TEM micrographs and EDX spectra confirmed the presence of $SiO_2$ in the composite nanofibers. The porosity of nanofibers was effectively enhanced by the introduction of electrospinning technique. ATR-FTIR and XRD results revealed that PVDF in the composite nanofibers exhibited the mixture crystal structure of ${\alpha}$-phase and ${\beta}$-phase. The crystal structure of ${\alpha}$-phase and crystallinity increased by the thermal treatment. In addition, the mechanical properties, thermal stability and hydrophobicity were markedly amplified by the thermal treatment.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.