• 제목/요약/키워드: inorganic fiber

검색결과 179건 처리시간 0.048초

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권3호
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

PVA섬유혼입 무기결합재의 수중양생온도에 따른 강도특성 (Strength Characteristic according to the Water Curing Temperature of the Inorganic Binder Mixed PVA Fiber)

  • 이진우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.194-195
    • /
    • 2013
  • Recently, it is the tendency that the CO2 gas generated in the manufacturing process is increased every year in case of the portland cement used in the most of constructions and civil engineering field. The method that uses the mineral admixtures as the cement substitute material in order to be more serious and as much as it occupies 7% of the global CO2 gas outlet amount such as 1 ton produces the cement and it ejects the CO2 gas of 0.4~1.0 ton, etc conclude this problem is examined. Therefore, PVA fiber was mixed into the inorganic binder recycling the blast furnace slag, which is the industrial byproduct with the purpose studying the Geo polymer which doesn't use the cement at all silica fume, red mud, and etc. In addition, the water curing temperature was differentiated and the strength characteristic of the curing body tried to be examined.

  • PDF

Feasibility study on fiber-optic inorganic scintillator array sensor system for multi-dimensional scanning of radioactive waste

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Jinhong Kim;Seunghyun Cho;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3206-3212
    • /
    • 2023
  • We developed a miniaturized multi-dimensional radiation sensor system consisting of an inorganic scintillator array and plastic optical fibers. This system can be applied to remotely obtain the radioactivity distribution and identify the radionuclides in radioactive waste by utilizing a scanning method. Variation in scintillation light was measured in two-dimensional regions of interest and then converted into radioactivity distribution images. Outliers present in the images were removed by using a digital filter to make the hot spot location more accurate and cubic interpolation was applied to make the images smoother and clearer. Next, gamma-ray spectroscopy was performed to identify the radionuclides, and three-dimensional volume scanning was also performed to effectively find the hot spot using the proposed array sensor.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작 (Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage)

  • 황영묵;조동현;조효성;김신;이봉수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제28권1호
    • /
    • pp.9-12
    • /
    • 2005
  • 본 연구에서는 엑스선 또는 감마선 원거리 측정용 초소형 방사선 센서를 개발하기 위해서 발광 스펙트럼이 다른 여러 종류의 무기 섬광체를 이용하여 필름형태의 센서부를 제작하였고, 방사선으로부터 발생되는 섬광량을 광검출기 및 광파워미터로 측정하였다. 본 연구 결과, 개발 가능한 방사선 센서는 직경 1 mm의 플라스틱 광섬유를 사용하여 전자기파 장애로부터 간섭을 받지 않음과 동시에 원거리 측정 및 신속, 정확한 방사선 계측이 가능하고 초소형, 초경량의 특성을 지니기 때문에 방사선 치료 시 고 분해능의 방사선 계측이 가능할 것으로 기대된다.

  • PDF