• Title/Summary/Keyword: inorganic content

Search Result 827, Processing Time 0.03 seconds

Decentralized Composting of Garbage in a Small Composter for Dwelling House I. Laboratory Composting of the Household Garbage in a Small Bin (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화 I. 실험실 조건에서 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.321-337
    • /
    • 1994
  • The garbage from the dwelling houses was composted in two kinds of small composter in laboratory to investigate the possibility of garbage composting. They were general small composters. One (type 1) was insullated but the other (type 2) was not. Because it was found that type 2 was not available for composting under our meteorological conditions through winter experiment, only type 1 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several compounds in compost was evaluated and discussed. The result summarized belows are those taken at the end of the experiment, if the time was not specified. 1) The maximum temperature was $58^{\circ}C$ in spring, $57^{\circ}C$ in summer and $41^{\circ}C$ in winter. This temperature was enough to destroy the pathogen except for winter. 2) The mass was reduced to average 62.5% and the volume reduction was avergae 74%. 3) The density was estimated as 0.7kg/l in spring, 0.8kg/l in summer and 1.1kg/l in winter. 4) The water content was not much changed for composting periods. It had 75.6% in spring and 76.6% in summer and winter. 5) There was a great seasonal difference in pH value. It was reached to pH 6.13 in spring, pH 8.62 in summer and pH 4.75 in winter. 6) The faster organic matter was decomposed, the greater ash content was increased. Cellulose and lignin content were increased, but hemicellulose content was reduced during composting period. 7) Nitrogen contents were in the range of 3.1-5.6% and especially high in summer. After ammonium nitrogen contents were increased at the early stage of composting period, they were decreased. The maximum ammonium nitrogen content was 3,243mg/kg after 2 weeks in winter, 6,053mg/kg after 3 weeks in spring and 30,828mg/kg after 6 weeks in summer. C/N-ratios were not much changed. Nitrification occurred actively in spring and summer. 8) The contents of volatile and higher fatty acids were increased in early stage of composting and reduced after that. The maximum content of total fatty acid was 10.1% after 2 weeks in winter, 5.8% after 2 weeks in spring and 15.7% after 4 weeks in summer. 9) The contents of inorganic compounds were not accumulated as composting was proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.9% $K_2O$, 2.4-4.6% CaO and 0.30-0.80% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.11-28.99mg/kg CN, 24-166mg/kg Zn, 5-129mg/kg Cu, 0.8-14.3mg/kg Cd, 7-42mg/kg Pb, ND-30mg/kg Cr and $ND-132.16\;{\mu}g/kg$ Hg.

  • PDF

Food Scientific Study on the Difference between Traditional Korean and Japanese Foods -Difference of inorganic cation contents between Kimchi, Japanese pickles and Salted and fermented fish intestines- (한일양국(韓日兩國)의 전통식품에 관한 식품학적(食品學的) 비교연구(比較硏究) -한국김치, 일본지물(漬物)과 젓갈류(類) 중(中)의 무기질 함량의 차이(差異)-)

  • Kaneko, Kentaro;Kim, Chon-Ho;Kaneda, Takashi
    • Journal of the Korean Society of Food Culture
    • /
    • v.6 no.2
    • /
    • pp.215-222
    • /
    • 1991
  • The difference between Kimchi, Japanese pickles, Korean Salted and fermented fish intestines and Japanese Salted and fermented fish intestines was investigated by comparising composition of inorganic cation in them. A high-performance liqid chromatography was used for the determination of Na, K, Ca and Mg in Kimchi, Japanese pickles and Salted and fermented fish intestines. The Kimchi samples analyzed were produced in the home, in the restaurant, in the nunnery and by food manufactures in Korea, and the pickles used were produced by food manufactures in Japan, and Salted and fermented fish intestines used were produced by food manufactures in Korea or Japan. The results obtained were summarized as following: (1) Sodium chloride in Kimchi was $1.8{\pm}0.37%$, $2.8{\pm}0.60%$ in Asazuke, Japanese picles which the fresh vegitables was seasoned with sodium chloride and seasoning, $1.8{\pm}0.32%$ in Japanese Kimchi, Japanese pickles which the fresh vegitables was seasoned with the mixture of sodium chloride, garlic powder, red peper's powder and seasoning, $5.3{\pm}0.66%$ in Shoyu Zuke, Japanese pickles which the salted vegetables was seasoned with sodium chloride and seasoning after desalting. (2) Na/K value in Kimchi was $1.7{\pm}0.17$ and $4.6{\pm}1.44$ in Asazuke, $2.6{\pm}0.85$ in Japanese Kimchi and $27.3{\pm}6.79$ in Shoyu zuke respectively. (3) Kimchi contained more K and Ca than Japanese pickles. (4) Kimchi remarkably contained the Ca originating to salted and fermented fish intestines. As the results of this study, it was presumed that while Kimchi and Japanese pickles is well known as a food that contributed to high blood pressure, Kimchi and Japanese Kimchi might not cause the high blood pressure because they have an excellent balance of Na/K value and low Na content. And also it was considered that these differences might be caused by the difference of th food taste between and Korean and Japanese people.

  • PDF

A study on composition of Inorganic Phosphours Forms and Comparison of Methods of Determining Available Phosphorus in Upland Soils (전토양(田土壤) 무기태인산(無機態燐酸)의 조성(組成)과 유효인산 분석방법(分析方法)에 관(關)한 비교연구(比較硏究))

  • Ryu, In-Soo;Shin, Cheol-Woo;Yoon, Jung-Hui;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 1978
  • Laboratory experiment was conducted to investigate the changes in the amount of inorganic phosphorus forms in soils incubated by preaddition of two kinds of phosphorus fertilizer and to various methods of available soil P. The results are summarized as following. 1. The content of Al-P form was higher in cultivated upland soil than in noncultivated soil and that of Fe-P was higher in clayey soil than in sandy soil. 2. The amount of Al-P was increased greatly by addition of Triple superphosphate and Al-P and Ca-P were increased by addition of Fused phosphate but only a little amount of Fe-P was increased by both two fertilizers. 3. The magnitute of available soil P values of different methods was in order of Bray No. 2-P>Lancaster-P${\fallingdotseq}$Bray No. 1-P>Truog-P>Olsen-P in case of addition of Triple superphosphate, while it was Lancaster-P >Bray No. 2-P>Truog-P>Bray No.1-P>Olsen-P in case of addition of Fused phosphate. 4. Extractability of soil P by variouse extractants for determining avaliable soil p was in order of Al-P>Ca-P>Fe-P but the extractability of Fe-P by Bray No. 1 and Bray No. 2 methods was very slight. 5. Bray No. 1, Bray No. 2 and extractants was more Olsen extractable about Al-P in soil than Ca-P but Lancaster and Truog metho is was more extractable about Ca-P than Al-P.

  • PDF

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

Effects of Compost Leachate on Growth and Yield of Leaf Lettuce in Hydroponic Culture (퇴비단 여과액비가 수경재배에서 상추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2009
  • The compost leachate was dark-colored solution that leaches out of the bottom of the compost pile. The compost leachate was rich in nutrients and can potentially used in plant culture. In the organic production, commercial liquid fertilizer was used to insure the availability of nutrients during the formation of the yield. The cost of supplemental liquid fertilizer could be reduced by developing a fertilizer based on animal fertilizer. This experiment was conducted to investigate the effect of different combination of compost leachate and conventional inorganic solution in hydroponic culture for lettuce growth. Six different treatments were applied. The compost leachate(CL) and nutrient solution(NS) were mixed by six different mixing ratios of 0:100, 20:80, 40:60, 60:40%, 80:20 and 100%:0% based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of leaf lettuce. The concentration of nutrient solution was adjusted 1.5 mS/cm in EC. The compost leachate was low in phosphorus(P), calcium(Ca), magnesium(Mg), but rich in potassium(K). The plant height of lettuce treated with CL 20+NS 80% was similar with 100% NS of control plot. Plant height was highest in the plot of CL 20+NS 80%. The treatment of 100% compost leachate was lowest in the growth characteristics of leaf lettuce. Number of leaf was very low in 100% compost leachate compared with plot of chemical nutrient solution. In the beginning of growth stage, SPAD value was reduced in plot treated with CL100%, but CL20+NS80% plot was higher compared to 100% compost leachate. SPAD value of leaf lettuce leaves was decreased as the amount of CL was increased. The dry weight of lettuce were 107.4, 104.2g in plot of NS 100% and CL 20%+NS80%, respectively. The leaf number and plant weight were decreased at high application plots of compost leachate. The leaf lettuce showed lowest in the plot treated with 100% compost leachate, and the growth of lettuce severely decreased after application of 100% CL treatment. The results showed that compost leachate can be use as liquid fertilizer for the organic hydroponic production. The mixture solution of 20% of compost leachate and 80% of nutrient solution could be used as a nutrition solution in hydroponic culture of leaf lettuce. Our studies have shown that is possible to produce using compost leachate, although growth is slower than when using a conventional inorganic hydroponic solution.

  • PDF

Evaluation of Fertilization Effect of Slow-Release Complex Fertilizer on Pepper Cultivation (원예용 완효성 복합비료의 고추에 대한 시비효과 평가)

  • Lee, Chang-Hoon;Lee, Hyub;Ha, Byung-Hyun;Kang, Chang-Sun;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • Slow-release fertilizers (SRF) have been used to reduce nutrient loss through increasing fertilizer efficiency and to save labor. Several SRFs were developed for rice plant in Korea, but there is few for horticultural crop plants. Two slow-release complex fertilizers, 100T and 150T, which made for controlling nitrogen release time up to 100 and 150 days, respectively, were selected for the incubation test cto evaluate nitrogen (N) release rate in soil. The N of urea selected as the control was completely released within a week after application. Sixty three and 53% of total N were released from 110T and 150T of slow release fertilizers within 8th weeks after application, respectively. For pepper cultivation CF110 and CF150, new slow-release complex fertilizer, were made of mixing 40% of conventional fertilizer and 60% of 110T and 150T, respectively, based on the amount of recommended fertilizer for pepper cultivation $(N-P_2O_5-K_2O=190-112-149\;kg\;ha^{-1})$, and were totally applied before pepper transplanting in the field as the basal fertilizer. Inorganic N $(NH_4^+-N+NO_3^--N)$ concentration in soil was higher in the CF110 treatment than in the control (NPK) at all period of pepper cultivation. In the CF150 treatment concentration of inorganic N in soil was low compared to control up to 8th weeks after transplanting. However, there was no difference in plant height and nutrient content of pepper leave between CF110 treatment and the control. In comparison, plant height was significantly lower in CF150 than the control and CF110 treatments. Around 4% of fresh pepper yield was increased in CF110 compared to the control, but it was decreased to about 2% by CF150 treatment. Conclusively, CF110 form could be recommended as a slow release fertilizer for pepper cultivation.

Control of Irrigation Amount for Production of High Quality Fruit in Melon Fertigation Cultivation (멜론 관비재배시 고품질 과실생산을 위한 관수량 조절)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Eom, Young-Cheol;Park, Jin-Meun;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.288-292
    • /
    • 2008
  • This study was conducted to identify the effects of irrigation amount to produce high quality melon fruit in fertigation culture. Irrigation amount of during fruit harvesting period was doubled at the low irrigation point ($(-45{\sim}50\;kPa$) treatment as 115 mm as than that of the high irrigation point ($-20{\sim}25\;kPa$) treatment. The plant growth rates such as stem length, leaf weight and plant height were a little diminished at the low irrigation point ($-45{\sim}50\;kPa$) than those of the other treatments. Internode length was however not affected by irrigation amount. Fruit weight was lighter at the low irrigation point ($-45{\sim}50\;kPa$) than that of at the high irrigation point and fruit height was shorter, but fruit diameter was not affected by irrigation amount. Fruit soluble solid was $0.9^{\circ}Bx$ higher at the low irrigation point ($-45{\sim}50\;kPa$) than at the high irrigation point ($-20{\sim}25\;kPa$) and net index was higher. Total marketable yield was highest by 3,937 kg/10a at the high irrigation point ($-20{\sim}25\;kPa$), but the excellent marketable yield was highest by 2,531 kg/10a at the low irrigation point ($-45{\sim}50\;kPa$). Inorganic contents of the soil N, K, Ca and Mg were not affected by irrigation amount. It was therefore thought that optimum irrigation point to produce high quality melon fruit by fertigation culture was $-45{\sim}50\;kPa$ at ripening stage.

Distribution of water Masses and Chemical Properties in the East Sea of korea in Spring 2005 (2005년 춘계 동해 중남부 해역의 수괴 분포 및 화학적 특성 연구)

  • Kim, Y.S.;Hwang, J.D.;Youn, S.H.;Yoon, S.C.;Hwang, U.G.;Shim, J.M.;Lee, Y.H.;Jin, H.G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • In order to understand the water mass properties in the southern location of the East Sea in the Korean coasts, the vertical distributions (down to 2,000 m deep) of water temperature, salinity, and dissolved inorganic nutrients were determined in April of 2005. The water mass of the surveyed location showed distinct vertical layers; highly saline surface, surface mixing layer, and thermocline of low temperature and salinity. The water layer below 300 m was characterized by water temperature lower than $1^{\circ}C$ and salinity 34.06, showing a representative water mass of the East Sea. The inorganic nutrients rapidly increased from 200m in the northern and southern parts around Ulleung Basin. A marked environmental difference was found between two layers separated by thermocline. The upper layer of the thermocline was oligotrophic and the vertical distribution of nutrient was very stable. In the water layer between 100 and 200m the nutrients slightly increased but remained still stable. From southern coasts to northeastern Ulleung, the water mass properties were site specific; the thickness of the surface mixed layer and nutricline showed a trend diminishing toward the northern locations probably due to diminished influence of Tsushima water. Redfield ratio (N:P=16:1) based on the ratio of chemical composition in organism revealed that nitrogen value continuously decreased to less than 16 with the water depth down to loom from the thermocline. The value in the water layer deeper than 100 to 200 m, thereafter, showed an increasing trend (over 16). This result was further supported by the finding of lower chlrophyll a content in the layer.

  • PDF

Phosphorus Phases in the Surface Sediment of the South Sea (남해 표층 퇴적물에서의 인의 존재상)

  • SON Jaekyung;LEE Tongsup;YANG Han Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.680-687
    • /
    • 1999
  • To understand the role of shelf sediment in phosphorus biogeochemical cycle, we carried out sequential sediment extraction (SEDEX) of P and porewater analysis on 14 core samples collected in the South Sea of Korea, SEDEX classified P-pools into 5 phases and results are grouped into two categories: reactive P (loosely sorbed-P and Fe bound-P) and refractory P (detrital inorganic-p, authigenic mineral-P and organic-P). Total P concentrations are decreased with sediment depth in all samples as a result of dissolution to porewater. Reactive P comprises about $20\~50\%$ of total P, and iron bound-P is the major form consisting $70\~80\%$ of reactive P-pool. Iron bound-P decreases sharply with depth. Depth profiles of dissolved P concentration in porewater show mirror image of iron bound-P, revealing the role of FeOOH as a regulator of reactive P supply to overlying water column. Authigenic mineral-P consists less than $5\%$ of total P, thus removal of reactive P by converting into refractory P seems inefficient in shelf sediment. This implies that continental shelf sediment sequesters P temporarily rather than permanently. Results show local variation. Nakdong estuary receiving large amount of terrigenous input shows the highest concentration of total P and reactive P. Here iron oxyhydroxides at the surface sediment control the water column flux of P from sediment. Although total P content at the surface is comparable (500$\~$600 ${\mu}g{\cdot}g^{-1}$) between the South Sea and East China Sea, the former contains more iron bound-P and less derital inorganic-P than the latter. Reasons for the difference seem due in part to particle texture, and to biological productivity which depends roughly on the distance from land.

  • PDF

Nutrient Solute Transport during the Course of Freezing and Thawing of Soils in Korea (동결(凍結)과 해빙(解氷) 기간(期間)중 토양내(土壤內) 양분(養分) 용질(溶質)의 이동(移動))

  • Ha, Sng-Keun;Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.135-144
    • /
    • 1995
  • Understanding on nutrient solute movement during the course of freezing and thawing was attempted through laboratory and field obsevations. Small sectioned tubes with 5cm inner diameter, 0.2cm thick and 1cm long were connected to 30cm long soil columns for laboratory study. The columns were filled with soil, and treated with 20mmol/kg $KNO_3$ for upper 5cm. The upper end was set in the freezing section, and the lower end was set in the refrigerating section of a refrigerator. Temperature was controlled at $-7({\pm}1)^{\circ}C$ and $1.5({\pm}1)^{\circ}C$, respectively. After top 5cm soil was frozen, the columns were sectioned, and analyzed for $NO_3^-$, $NH_4^+$ and $K^+$. For field study, the 20cm inner diameter and lm long soil columns were installed in Chuncheon and Daegwanryung, where the altitude was 74m and 840m, respectively. The soils used were silt loam and clay loam. The top 20cm soils were treated with 50mmol/kg as $KNO_3$. The soil columns were taken during winter freezing and after thawing. By laboratiry study, upward movement of $NO_3^-$ and $K^+$ during the course of freezing was confirmed. The upward movement of $K^+$ was, however, one fifth to one tenth of $NO_3^-$. The upward movement of inorganic nitrogen as well as laboratory during the course of freezing, but large amount of nitrogen was lost from the profile after thawing in early spring. Leached nitrogen from the upper 20cm to lower part was 17 to 24 percents. The maximum depth of leaching during the experiment was 50cm for all soils. The net loss of inorganic nitrogen from the whole profile ranged 8.7 to 39.5 percents. The net loss was greater in Daegwanryung where temperature was lower and snowfall was larger than Chuncheon, and the loss was greater from the silt loam soil than clay loam soil of which percolation rate was small. The results implied that reasons for nitrogen loss during the winter might include surface washing by snow melt as well as leaching and denitrification.

  • PDF