• Title/Summary/Keyword: inner structural part

Search Result 74, Processing Time 0.028 seconds

VIBRATION AND STRESS ANALYSIS OF A UGS ASSEMBLY FOR THE APR1400 RVI CVAP

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.817-824
    • /
    • 2012
  • The most important component of a nuclear power plant is its nuclear reactor. Studies on the integrity of reactors have become an important part regarding the safety of a nuclear power plant. The US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) to be used to verify the structural integrity of the Reactor Vessel Internals (RVI) for flow-induced vibration prior to commercial operation. However, there are few published studies related to the RVI CVAP. We classified the Advanced Power Reactor 1400 (APR1400) RVI CVAP as a non-prototype category-2 reactor as part of an independent validation of its design. The aim of this paper is to present the results of structural response analyses of the Upper Guide Structure (UGS) assembly of the APR1400 reactor. These results show that the UGS and the Inner Barrel Assembly (IBA) meet the specified integrity levels of the design acceptance criteria. The vibration and stress analysis results in this paper will be used as basic information to select measurement locations of the vibration and stress for the APR1400 RVI CVAP.

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

A Study on the Structural Strength Fatigue Improvement of an Axle Shaft for a 3.5-Ton Commercial Vehicle (3.5톤 상용차용 액슬샤프트의 피로강도 개선에 대한 연구)

  • Moon, Hong-Ju;Sim, Ki-Joong;Jeon, Namjin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.71-77
    • /
    • 2018
  • This paper suggests how to improve the fatigue strength of an axle shaft, which is the vulnerable part of an axle shaft system for a 3.5-ton commercial vehicle. The axle shaft is composed of a universal joint with a spider and yoke, yoke shaft, and so on. Structural analysis of the initial axle shaft was conducted to select the exact area for structural strength fatigue improvement, and as a result, the inner/outer yoke shaft and spider were selected. Four cases considered design variables, such as length and thickness, to verify the enhanced durability of the axle shaft, and fatigue analysis was conducted. Finally, we suggest that the axle shaft system satisfied the working conditions for a 3.5-ton commercial vehicle.

A Study on the Structural Analysis of the Supporting System for LNG Vehicle Fuel Tank (LNG차량용 연료탱크의 지지시스템 구조해석에 관한 연구)

  • Yun, Sang-Kook;Kim, Dong-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.841-846
    • /
    • 2008
  • Recently the LNG(liquified natural gas) public buses have been introduced to prevent the air pollution in metropolitan areas. As the LNG temperature in fuel tank is as low as $-162^{\circ}C$. the thermal and structural effects of tank components need to be studied for safe introduction in the market. Especially the support system of LNG fuel tank in vehicle, which has connected with inside and outside of tanks, should put attention to reduce the structural stress due to cryogenic temperature and to restrict the heat flux from ambient. There are two supporting systems in the tank, that one is connected between inside and outside tanks by welding, and the other is the inserted support system which is a cylindrical SUS bar inserted in a hole of the supporting plate. In this study the temperature distribution and thermal stress of the inserted support system were evaluated by using the utility program as ANSYS. The results showed that the rate of heat transfer to inner tank through this support system was quite small due to limited contact of support bar with plate. but the thermal stress of support plate was obtained beyond the limited tensile value of SUS304. The cautious design for the support plate part, therefore, should be given to make the safe support system of LNG vehicle fuel tank.

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

A study on the construction and change-over of Yeongchunheon and Jipbokheon in Changgyeonggung Palace (창경궁 영춘헌과 집복헌의 건축과 변화)

  • Lee, Jong-Seo;Kim, Bue-Dyel
    • Journal of architectural history
    • /
    • v.31 no.5
    • /
    • pp.35-44
    • /
    • 2022
  • Although Changgyeong-gung was devastgated by Japanease invasion in 1592, it was restored during the reign of Gwanghaegun, had remembered of early Joseon danasty's architecturural order. It was destroyed several times by fire after that but was rebuilt immedieately. There are Donggol-do and Donggol-dohyeong, so we can fine the change of architectures in Changgyeong-gung. Jibbokheon(集福軒) and Yeongchunheon(迎春軒) are marked in another location and architectures in Donggon-do and Donggon-dohyeong. The reason has been known that it was rebuilt after the fire in 1830. As a result of reviewing the record of birth of crown prince Sado and movement of coffin of King Jeong-jo in funeral ceremony, it was confirmed that notation of Jibbokheon and Yeongchunhyeon was misprinted. In particular, Yeongchunheon confirmed the possibility that the existing building was built by extending it while applying the asymmetrical building with four-purlins structure method during the reign of King Jeongjo, and that it was reconstructed by moving Yeonyeonghap when it was destroyed by fire 1830. And although now Jibbokheon and Yeongchunhyeon(延英閤) are connected, nothern part of Jibbokheon did not burn in the fire, so it was judged that original architectural plan were maintained until now. The current building north of Jibbokheon was built before 1695 (21st year of King Sukjong), which was first identified in the Gunggeolji(宮闕志), and there is a possibility that it may have been a part of Janggyeongmun(長慶門) inner corridor built before 1633. The present building north of Jibbokheon has great architectural significance in that it maintains the structural method of the early Joseon Dynasty which was often applied to buildings with a small scale of inner palace.

A Study on the Occurrence and A change in the times of the Nemok-dori (내목도리의 발생과 시대적 변화에 관한 연구)

  • Heo, Kyoung-Do;Chung, Myung-Sup
    • Journal of architectural history
    • /
    • v.29 no.1
    • /
    • pp.39-49
    • /
    • 2020
  • A dapo type bracket system which consists of chuganpo(柱間包) and chusangpo(柱上包) with a fake-beam adopted a nemok-dori member to cope with oemok-dori member in order to obtain balance between the outer-side and the inner-side of the bracket system. The middle part of the longest rater in the dapo system is supported by three points made by oemok-dori, jusim-dori and nemok-dori members and the area between the rafer supporting points forms a supporting area. The increase of rafter supporting points and supporting area leads to heightening the structural stability and the efficiency of load delivery. In the eave of dapo system the portion where the three supporting points formed by oemok-dori, jusim-dori and nemok-dori members shows as 33% in the early period, 71% in the middle period and 78% in the later period. On the contrary the portion where more than one of the three dori members were omitted shows as 67% in the early period, 29% in the middle period and 22% in the later period. This is the result of the increase of the number and the distance of steps in the dapo bracket system as time goes on. This is because the structural role of three supporting points becomes important as the increase of distance between the dori members leads to the increase of load which burdens on each dori member.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

A study about structural analysis of double structured non-pneumatic wheel (이중구조를 가진 비공기압바퀴의 구조해석에 관한 연구)

  • Song, Gi-Hwan;Lee, Sang-Hun;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il;Yoo, Wha-Wul;Park, Sung-Hak;Park, Kyung-Hoon
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2015
  • Non-pneumatic wheels have been widely used instead of general tube type wheels beause of many reasons, for example, wheel size, price restriction, heavy-duty problem and so on. Almost small size wheels or casters were non-pneumatic type but structural stability was not certified. This paper presents a double structured non-pneumatic wheel, called "smart caster", which consisted with inner and outer wheels connected by chips, and finite element analysis processes were conducted in order to determine important dwsign factors before actual design for mass production. For structural analysis ABAQUS was used under various boundary conditions with incrementally varied loads until 2,000N. Then structural staility was evaluated according to varied loads below ultimate stress. Generally stresses were concentrated at the lower parts of the wheel, and especially contact parts between wheel and ground. In addition, maximum stress appeared at contact parts between the wheel lower part and chips.

  • PDF

A Study on the Spatial Characteristics from the "The Holy Trinity" Fresco Painted by Masaccio (마사치오의 "삼위일체" 벽화에서 나타난 공간적인 특성에 관한 연구)

  • Kim, Seok-Man
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.7-22
    • /
    • 2013
  • The purpose of this paper is to study on the spatial characteristics from the "The Holy Trinity" fresco painted by Masaccio in the early Renaissance paintings. The results of this study are as follows. 1. The elevation composition of the "The Holy Trinity" fresco is divided into the upper and lower structure through horizontal axis on horizontal line around vanishing point. The upper structure is composed of vertical axis formed through the disposition of the "Trinity" elements and horizontal axis on horizontal line. The lower structure is composed of the sarcophagus and skeleton in such inside and the altar supported through circular columns of left and right. 2. The section composition of the "The Holy Trinity" fresco is composed of the ceiling structure of cylindrical-shaped vault on upper part around basic square floor plan that is interior space and upper structure. The exterior space and lower structure is placed with sarcophagus in inner part that altar and step is projected as same height and width in the outside direction. 3. The basic floor composition of the "The Holy Trinity" fresco is planned by square shape around structural columns that is placed at corners as symmetry through transverse, longitudinal and diagonal axis. The whole floor composition planned through the altar and step that is in exterior space at front, the apse of round form at rear part and the structure of the middle story concept at interior. 4. The visual aspect of the "The Holy Trinity" fresco is composed of the stable balance in relation with distance and height because the interior and exterior space as well as the upper structure and lower structure is formed by regular proportion system. The elevation angle of visual range was planned to view in detail generally or partially the architectural composition system and element, characters through proper visual distance, center and position.