• Title/Summary/Keyword: inner pressure

Search Result 1,078, Processing Time 0.025 seconds

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Numerical analysis on the inner flow characteristic for small smoke collector (소형 흡연집진기 내부 유동특성에 관한 수치해석)

  • Jang, Sung Cheol;Woong, Kim Jae;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-75
    • /
    • 2013
  • This study is flow analysis on the smoke collector in smoking room. The smoke collector for improving impure air at smoking area is analyzed and the inner flow filed in smoke collector is confirmed on the study result. The velocity with pressure distribution according to suction flow rate at filter entrance is also compared. Pressure characteristic and pressure resistance coefficient are analyzed according to flow analysis result for each other filter. The pressure drop of about 15 Pa occurs at the normal driving mode to strainer inlet from HEPA filter outlet. On the other hand, the pressure drop about 44% increases at turbo mode.

Study on Condensing Pressure Drop of Hydrocarbon Refrigerants (탄화수소계 냉매의 응축 압력강하에 관한 연구)

  • Kim, Jae-Dol;Choi, Jun-Hyuk;Jeong, Seok-Kwon;Yoon, Jung-In;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.218-224
    • /
    • 2006
  • Experimental results for pressure gradient of HCs refrigerants R-290. R-600a. R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have the tube inner diameter of 10.98mm. and the tube inner diameter of 8mm are used for this investigation. Hydrocarbon refrigerants have higher pressure drop than R-22 in both test sections with the diameters of 12.70mm and 9.52mm. Pressure drop increased with the increase of the mass flux. These results form the investigation can be used in the design of heat transfer exchanger using hydrocarbons as the refrigerant for the air-conditioning systems

Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle (초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향)

  • Baek, Seung-Cheol;Kwon, Soo-Young;Joo, Seong-Yeol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF

CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR (가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석)

  • In, W.K.;Shin, C.B.;Park, J.Y.;Oh, D.S.;Lee, C.Y.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

Effect of deflected inflow on flows in a strongly-curved 90 degree elbow

  • Iwamoto, Yukiharu;Kusuzaki, Ryo;Sogo, Motosuke;Yasuda, Kazunori;Yamano, Hidemasa;Tanaka, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.76-85
    • /
    • 2017
  • Wall pressure measurements and flow visualization were conducted for a 90 degree elbow with an axis curvature radius the same as its inner diameter (125 mm). Reynolds numbers 320,000 and 500,000, based on the inner diameter and bulk velocity, were examined. A deflected inflow, having an almost constant velocity slope and a faster velocity at the inside, was introduced. Ensemble averaged pressure distributions showed that no difference of normalized pressure could be found in both the Reynolds number cases. Power spectral density functions of pressures exhibited that the fluctuation having the Strouhal number (based on the inner diameter and bulk velocity) of 0.6 existed in the downstream region of the elbow, which was 0.1 larger than that of the uniform inflow case [1]. Results of numerical calculations qualitatively coincided with the experimental ones.

An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects (유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

Endoscopic Treatment of Chronic Subdural Hematoma Combined with Inner Subdural Hygroma

  • Yoon Hwan Park;Kwang-Ryeol Kim;Ki Hong Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.552-561
    • /
    • 2023
  • Objective : A chronic subdural hematoma (CSDH) is a collection of bloody fluid located in the subdural space and encapsulated by neo-membranes. An inner subdural hygroma (ISH) is observed between the inner membrane of a CSDH and the brain surface. We present six cases of CSDH combined with ISH treated via endoscopy. Methods : Between 2011 and 2022, among the 107 patients diagnosed with CSDH in our institute, six patients were identified as presenting with CSDH combined with ISH and were included in this study. Preoperative computerized tomography (CT) and magnetic resonance imaging (MRI) were performed simultaneously, and endoscopic surgery for aspiration of the hematoma was performed in all cases of CSDH combined with ISH. Results : The mean age of patients was 71 years (range, 66 to 79). The patients were all male. In two cases, the ISH was not identified on CT, but was clearly seen on MRI in all patients. The inner membrane of the CSDH was tense and bulging after draining of the CSDH in endoscopic view due to the high pressure of the ISH. After fenestration of the inner membrane of the CSDH and aspiration of the ISH, the membrane was sunken down due to the decreasing pressure of the ISH. There was one recurrence in post-operative 2-month follow up. The symptoms improved in all patients after surgery, and there were no surgery-related complications. Conclusion : CSDH combined with ISH can be diagnosed on imaging, and endoscopic surgery facilitates safe and effective treatment.

The Comparison on the Compression Measurement Value of Medical Compression Stockings (수입 의료용 압박스타킹의 압력 측정치 비교)

  • Do, Wol-Hee;Kim, Nam-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1060-1074
    • /
    • 2013
  • This study measured and analyzed pressure at each measurement part of imported compression stockings sold in Korea to provide basic information to establish a pressure standard and grade ranking. This study used 40 medical compression stockings imported from 6 countries. Pressure measurements were taken at 11 points: front side and back side of ankle, end-point of the gastrocnemius muscle, front, inner side, back, and outer side of calf, back side of below knew girth, inner side, and outer side of mid-thigh girth, and inner side of thigh girth. AMI 3037-10 and AMI 3037-2 were used for measurements taken inside an environmental chamber at a temperature of $21^{\circ}C$ and a relative humidity (RH) of 65%. For the measurements, 11 air pack sensors were attached to a wooden model leg (Hohenstein) and three measurements were taken at each measurement point in three minutes. The average of these measurements was used for analysis. The findings of this study were as follows. As for the front side of the ankle, of the 40 products, 14 products (6 USA, 2 Swiss, 3 Italian, and 2 Taiwanese) were within the pressure range indicated on the product label; however, no German products fell within the pressure range. A total of 8 products (5 USA, 1 Swiss, 1 Italian, and 1 German) were gradient compression type; however, no Japanese or Taiwanese product were of this type. The majority of products had the highest pressure at the end-point of the gastrocnemius muscle. Only 3 products, 1 USA (Jobst Opaque 30-40mmHg), 1 Swiss (Sigvaris Cotton 34-46mmHg) and 1 Italian (Jobstocking 25-32mmHg), had measurements that met the indicated standard pressure, were a gradient compression type, and met the overall standard for compression stockings.

Effect of the Inner Pressure on a Hybrid Composite Flywheel Retor (하이브리드 복합재 플라이휠 로터에 작용하는 내압의 효과)

  • Oh Je-Hoon;Han Sang-Chul;Kim Myung-Hoon;Ha Sung Kyu
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • The delamination in the filament-wound composite flywheel rotor often lowers the performance of the flywheel energy storage system. A conventional ring type hub usually causes tensile stresses on the inner surface of the composite rotor, resulting in lowering the maximum rotational speed of the rotor. In this work, the stress and strain distributions within a hybrid composite rotor were derived from the two-dimensional governing equation with the specified boundary conditions, and an optimum pressure at the inner surface of the rotor was proposed to minimize the strength ratio and maximize the storage energy. A split type hub was introduced to apply the calculated optimum pressure at the inner surface, and a spin test was performed up to 40,000 rpm to demonstrate the performance of the split type hub with radial and circumferential strains measured using a wireless telemetry system. From the analysis and the test, it was found that the split type hub successfully generates a compressive pressure on the inner surface of the rotor, which can enhance the performance of the composite rotor by lowering the strength ratio within the rotor.