• 제목/요약/키워드: innate immune response

검색결과 256건 처리시간 0.023초

사료 내 nucleotide 첨가가 틸라피아(Oreochromis niloticus)의 성장, 사료효율 및 비특이적 면역력에 미치는 영향 (Effects of Dietary Supplementation with Nucleotide on Growth Performance, Feed Utilization, and Non-Specific Immune Responses of Nile Tilapia Oreochromis niloticus)

  • 송진우;임세진;오대한;차지훈;이경준
    • 한국수산과학회지
    • /
    • 제45권6호
    • /
    • pp.648-653
    • /
    • 2012
  • The present study examined the effects of dietary supplementation with nucleotide (inosine monophosphate product, IMP) on the growth performance, feed utilization, and non-specific immune responses of juvenile tilapia Oreochromis niloticus. Triplicate groups of tilapia (initial body weight, $7.4{\pm}0.04$ g) were fed experimental diets containing 0%, 0.05%, 0.1%, and 0.2% IMP. Fish were fed six times a day until apparent satiation for 13 weeks. At the end of the feeding trial, final body weight and food utilization of fish fed 0.1% IMP were significantly higher than those of fish fed the control diet. Results of hematological parameters were not affected by dietary IMP. However, blood protein level was significantly higher in the 0.05% treatment, as compared to that of the control and 0.2% IMP diets. Myeloperoxidase activity was higher in fish fed 0.1% IMP than in fish fed the control and 0.2% IMP diets. These results suggest that dietary supplementation with IMP can enhance the growth performance, feed utilization, and innate immune response of juvenile tilapia. The optimal IMP supplementation level appears to be 0.1% in practical feed formulations for tilapia.

Analysis of Tissue-Specific Interferon Regulatory Factor 3 (IRF3) Gene Expression against Viral Infection in Paralichthys olivaceus

  • Kim, Kyung-Hee;Lee, Sanghyun;Park, Jong-Won;Jung, Hyo Sun;Kim, Julan;Yang, Hyerim;Lee, Jeong-Ho;Lee, Dain
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.235-244
    • /
    • 2021
  • Interferon Regulatory Factor 3 (IRF3) is a member of interferon-regulated transcription factor family and is known to play an important role in the innate immune response against viral infections. In this study, the expression of IRF3 in different tissues, developmental stages, and stocking densities of olive flounder was investigated. The expression of IRF3 was observed to gradually increase in early-stage juvenile fish. The highest expression was observed in later-stage juvenile fish when immune tissues were formed. High IRF3 expression was observed in the muscles and the brain tissues. The expression of IRF3 was observed in fish at different stocking densities after viral hemorrhagic septicemia virus (VHSV) infection. It yielded an interesting expression pattern in the muscles and the brain tissues of fish stocked at low density. These observations can be used as basic data for the study of the expression of immune response-related genes against viruses based on stocking density and immune systems in other fish species.

Drosophila melanogaster Is Susceptible to Vibrio cholerae Infection

  • Park, Shin-Young;Heo, Yun-Jeong;Kim, Kun-Soo;Cho, You-Hee
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.409-415
    • /
    • 2005
  • Infection of Drosophila melanogaster adults with 6 Vibrio species revealed that V. cholerae was lethal (100% mortality) within 20 h as a result of systemic infection. Avirulent infection by V. vulnificus restricted the subsequent virulent infection by V. cholerae. The immediate transcription of antimicrobial peptides (AMPs), most notably Attacin A, was delayed in V. cholerae infection compared to V. vulnificus infection. Ectopic expression of Attacin A and Metchnikowin enhanced the survival of D. melanogaster upon V. cholerae infection. These results suggest that AMPs are important in the response to infections by Vibrio species and that the signaling pathways governing their expression may be targeted by V. cholerae virulence factors to elude the innate immunity of Drosophila.

천식이 예방접종 후 항체 형성에 미치는 영향 (Asthma has an adverse effect on the production of antibody to vaccines)

  • 신윤호
    • Allergy, Asthma & Respiratory Disease
    • /
    • 제6권6호
    • /
    • pp.279-283
    • /
    • 2018
  • Asthma is considered a chronic inflammatory airway disease. Mounting evidence reports that patients with asthma are at significantly higher risk of developing communicable diseases such as invasive pneumococcal disease, Haemophilus influenza, varicella, measles, pertussis and tetanus. While impaired innate immunity may play a role in increased risk of developing these infections, suboptimal adaptive immune responses have also been reported to play a role in asthmatic subjects with regard to increased risk of infections. This review discusses the currently underrecognized immunological effect of asthma on antibody to vaccines and recommends that clinicians be aware of less optimal antibody production in response to vaccines in subjects with asthma.

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.73-82
    • /
    • 2015
  • Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Comparative Analysis of the Complete Genome of Lactobacillus plantarum GB-LP2 and Potential Candidate Genes for Host Immune System Enhancement

  • Kwak, Woori;Kim, Kwondo;Lee, Chul;Lee, Chanho;Kang, Jungsun;Cho, Kyungjin;Yoon, Sook Hee;Kang, Dae-Kyung;Kim, Heebal;Heo, Jaeyoung;Cho, Seoae
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.684-692
    • /
    • 2016
  • Acute respiratory virus infectious diseases are a growing health problem, particularly among children and the elderly. Much effort has been made to develop probiotics that prevent influenza virus infections by enhancing innate immunity in the respiratory tract until vaccines are available. Lactobacillus plantarum GB-LP2, isolated from a traditional Korean fermented vegetable, has exhibited preventive effects on influenza virus infection in mice. To identify the molecular basis of this strain, we conducted a whole-genome assembly study. The single circular DNA chromosome of 3,284,304 bp was completely assembled and 3,250 protein-encoding genes were predicted. Evolutionarily accelerated genes related to the phenotypic trait of anti-infective activities for influenza virus were identified. These genes encode three integral membrane proteins, a teichoic acid export ATP-binding protein and a glucosamine - fructose-6-phosphate aminotransferase involved in host innate immunity, the nonspecific DNA-binding protein Dps, which protects bacteria from oxidative damage, and the response regulator of the three-component quorum-sensing regulatory system, which is related to the capacity of adhesion to the surface of the respiratory tract and competition with pathogens. This is the first study to identify the genetic backgrounds of the antiviral activity in L. plantarum strains. These findings provide insight into the anti-infective activities of L. plantarum and the development of preventive probiotics.

Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity

  • Lee, Jeong Yoon;Nguyen, Thi Thuy Ngan;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1651-1658
    • /
    • 2020
  • Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • 제22권3호
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

Interleukin-$32{\gamma}$ Transgenic Mice Resist LPS-Mediated Septic Shock

  • Kim, Sun Jong;Lee, Siyoung;Kwak, Areum;Kim, Eunsom;Jo, Seunghyun;Bae, Suyoung;Lee, Youngmin;Ryoo, Soyoon;Choi, Jida;Kim, Soohyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1133-1142
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine and inducer of various proinflammatory cytokines such as $TNF{\alpha}$, IL-$1{\beta}$, and IL-6 as well as chemokines. There are five splicing variants (${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$, and ${\varepsilon}$) and IL-$32{\gamma}$ is the most active isoform. We generated human IL-$32{\gamma}$ transgenic (IL-$32{\gamma}$ TG) mice to express high level of IL-$32{\gamma}$ in various tissues, including immune cells. The pathology of sepsis is based on the systemic inflammatory response that is characterized by upregulating inflammatory cytokines in whole body, particularly in response to gram-negative bacteria. We investigated the role of IL-$32{\gamma}$ in a mouse model of experimental sepsis by using lipopolysaccharides (LPS). We found that IL-$32{\gamma}TG$ mice resisted LPS-induced lethal endotoxemia. IL-$32{\gamma}$ reduced systemic cytokines release after LPS administration but not the local immune response. IL-$32{\gamma}TG$ increased neutrophil influx into the initial foci of the primary injected site, and prolonged local cytokines and chemokines production. These results suggest that neutrophil recruitment in IL-$32{\gamma}TG$ occurred as a result of the local induction of chemokines but not the systemic inflammatory cytokine circulation. Together, our results suggest that IL-$32{\gamma}$ enhances an innate immune response against local infection but inhibits the spread of immune responses, leading to systemic immune disorder.