• Title/Summary/Keyword: inlet shape

Search Result 362, Processing Time 0.029 seconds

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.-S.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.583-589
    • /
    • 2004
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fan has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control of the size and position, is the important cause of performance decrease. In this study, experiments are carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to research the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spital, which is the important factor haying an effect on it.

  • PDF

Cryogenic Jet Injection Test Using Liquid Nitrogen (액체 질소를 이용한 극저온 단일 제트 분사 시험)

  • Cho, Seong-Ho;Khil, Tae-Ock;Park, Gu-Jeong;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.597-600
    • /
    • 2010
  • Cold flow injection test was conducted to investigate the characteristics of cryogenic liquid nitrogen jet at sub to supercritical condition. Single jet injector element was installed in high pressure chamber to investigate the effect of ambient pressure around the jet, injector geometry and flow conditions. Experimental results showed obvious differences between jet characteristics under subcritical and supercritical condition. Effect of injector inlet shape also was investigated.

  • PDF

Study on tunnel geometry protecting a propeller using potential based panel method (포텐셜 기저 패널법에 의한 프로펠러 보호터널의 형상변화에 관한 연구)

  • Suh, Sung-Bu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.614-621
    • /
    • 2007
  • The fishing boat propulsion system employing the modified stern shape and the tunnel to protect a propeller is developed to increase the cruise speed and reduce he problem resulting from the open propeller accidentally catching the waste net and able on the sea. Using 3 different tunnel types, the model test was performed in the circular water channel and the panel method based on the potential theory is applied to analyze the open water performance of the propeller. In the numerical analysis using he potential-based panel method, it calculates the hydrodynamic interaction between the propeller and the tunnel and evaluates the effect of the tunnel geometry. From the numerical and experimental results differing tunnel geometries, the propulsion efficiency is increased by the larger diameter of the inlet than the outlet of the tunnel and the smaller gap between the propeller tip and the tunnel internal surface. These results provide the information of the propeller system with the tunnel and the hydrodynamic interaction between the propeller and the tunnel.

Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst (상업용 오존촉매와 광촉매를 이용한 오존제거특성)

  • Byeon, Jeong-Hoon;Park, Jae-Hong;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF

A Numerical Study on the Effect of Blade Shapes on the Performance of the Propeller-type Submersible Mixers (날개형상이 프로펠러형 수중믹서의 성능에 미치는 영향에 관한 수치적 연구)

  • Choi, Y. S.;Lee, J. H.;Kim, S. I.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.252-256
    • /
    • 1999
  • In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.

  • PDF

Performance Analysis of the Lubricating Oil Feed Pump by the Anslysis of the Flow Network (유로망 해석에 의한 윤활유 공급펌프 성능 해석)

  • Kil, Doo-Song;Lee, Young-Ho
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • In this paper, the cause of the discrepancy of the inlet and outlet flow of the lubricating oil feed pump was analyzed by the flow measurement and the analysis of the flow network. At first, we thought that the flow difference was induced by a leak in the middle of the flow network. But, through the flow measurement using ultrasonic flow meter and the performance analysis of the pump, we knew that the cause of the flow difference was due to a drop in efficiency of the pump according to the pressure drop of the outlet. Also, we knew that the shape of the piping had no effect on the efficiency of the pump.

  • PDF

Numerical Analysis on Hood Shape Improvement of Local Ventilation System (국소환기시스템의 후드형상 개선에 따른 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Choi, Joo-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2009
  • The aim of this study is to remove crack on a ventilation device at the suction part of zinc plating factory, and the main point is making optimum configuration by improving an existing hood system. The result shows that existing hood system has problem with duct configuration, angle and reducer. Model-5 shows lowest pressure difference as meaning of suction capability. The hood inlet surface has most uniform suction capability.

Numerical study on the design of urea decomposition chamber in LP SCR system

  • Um, Hyung Sik;Kim, Daehee;Kim, Keon Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.307-313
    • /
    • 2019
  • In order to design efficient Urea Decomposition Chamber (UDC) for the Low Pressure (LP) Selective Catalytic Reduction (SCR) system, numerical simulations were conducted with respect to various design parameters. The design parameters examined in this simulation include the chamber diameter, inlet and outlet shape of chamber, and urea injection point. Reaction kinetics for the urea decomposition was proposed and validated with the experimental data in the range of $300{\sim}450^{\circ}C$. The effects of design parameters on the performance of UDC were evaluated by the calculated urea conversion and pressure drop. As a result, the local optimum design values were derived by the parametric study.

A Study on Design of Ultra-High-Pressure Ball Valve for Hydrogen Station (수소 충전소용 초고압 볼밸브 설계에 관한 연구)

  • Choi, Ji Ah;Ji, Sang Won;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.23-29
    • /
    • 2021
  • Hydrogen energy is the clean energy source of the future. Ultra-high-pressure hydrogen is used in hydrogen stations, with its parts being developed. On the other hand, ultra-high-pressure ball valve, which is one of its parts, depends on overseas, with the level of domestic research on this being only about 10% of advanced technology research on this abroad. In this study, the shape of an ultra-high-pressure ball valve for a hydrogen station was designed to improve its structural strength. The valve body was designed according to distance between both processed body holes along inlet and outlet ports. The designed vale body was then analyzed using ANSYS to check whether points with stress were concentrated. In addition, the valve with improved body was analyzed to confirm that the valve satisfied the design condition.

A Numerical Study on Two-Dimensional Turbulent Flow Field Around a Building (건물주위의 이차원 난류류동장에 대한 수치적 해석)

  • Won Sung Pil;Lee Dong Hwan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.166-175
    • /
    • 1987
  • The heat loss of a building within a wind flow field results from convection and natural ventilation. Loss from natural ventilation is much more than one from convection, and the former depends mostly on the pressure distribution at the building surface. Therefore, the objective of the present study is to calculate the pressure distribution and investigate flow phenomena, around the building with a rectangular shape in a two-dimensional turbulent flow field. The finite difference method, modelled upon the turbulence $k-\epsilon$ model, has been applied to the analysis. The results, followed by the changes of Reynolds numbers, inlet flow conditions, and building shapes, have been also obtained, respectively. Various results of the present numerical analysis coincide qualitatively well with earlier reported empirical results.

  • PDF