• Title/Summary/Keyword: inkjet

Search Result 383, Processing Time 0.031 seconds

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • Byeon, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

Polymer Inkjet Printing: Construction of Three-Dimensional Structures at Micro-Scale by Repeated Lamination

  • Yun, Yeon-Hee;Kim, Jae-Dong;Lee, Byung-Kook;Cho, Yong-Woo;Lee, Hee-Young
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • Solution-based, direct-write patterning by an automated, computer-controlled, inkjet technique is of particular interest in a wide variety of industrial fields. We report the construction of three-dimensional (3D), micro-patterned structures by polymer inkjet printing. A piezoelectric, drop-on-demand (DOD) inkjet printing system and a common polymer, PVA (poly(vinyl alcohol)), were explored for 3D construction. After a systematic preliminary study with different solvent systems, a mixture of water and DMSO was chosen as an appropriate solvent for PVA inks. The use of water as a single solvent resulted in frequent PVA clogging when the nozzles were undisturbed. Among the tested polymer ink compositions, the PVA inks in a water/DMSO mixture (4/1 v/v) with concentrations of 3 to 5 g/dL proved to be appropriate for piezoelectric DOD inkjet printing because they were well within the proper viscosity and surface tension range. When a dot was printed, the so-called 'coffee-ring effect' was significant, but its appearance was not prominent in line printing. The optimal polymer inkjet printing process was repeated slice after slice up to 200 times, which produced a well-defined, 3 D micro-patterned surface. The overall results implied that piezoelectric DOD polymer inkjet printing could be a powerful, solid-freeform, fabrication technology to create a controlled 3D architecture.

Through Flow Technology;Enabling Highly Reliable Inkjet Manufacturing of Flat Panel Displays

  • Attard, John
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.373-375
    • /
    • 2007
  • Through Flow Technology offers unparalleled advantages for the manufacturing of flat panel displays using inkjet technology, including: outstanding reliability, self-maintenance, selfpriming and simple set up. The Xaar 1001 GS6 is the first product incorporating this technology. The concept and test results will be presented.

  • PDF

Stacking of functional inks for organic solar cell using inkjet printing (잉크젯 프린팅을 이용한 유기태양전지용 기능성 잉크의 적층)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Heui-Seok;Kang, Kyung-Tae;Kim, Jong-Seok;Cho, Young-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.398-401
    • /
    • 2008
  • Inkjet printing is commonly used in the controlled deposition of solutions of functional materials in specific locations on a substrate, and it can provide easy and fast deposition of polymer films over a large area. which could become a way to manufacturer low cost solar cells. In the present study, inkjet printing technology is adopted to deposit functional layers of PEDOT/PSS solutions and P3HT/PCBM blends for organic solar cell. The results show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film could be achieved by a balance between ink property and substrate treatment. As a result, a power conversion efficiency of 2.0% has been accomplished a solar cells applying inkjet technology.

  • PDF

Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head (요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.116-125
    • /
    • 2008
  • Inkjet printing technology with a drop-on-demand (DOD) inkget head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

Performance Analysis of the Industrial Inkjet Printing Head Using 1D Lumped Model (1 차원 Lumped 모델을 이용한 산업용 잉크젯 프린팅 헤드 토출 특성 해석)

  • Sim, Won-Chul;Kim, Young-Jae;Park, Chang-Sung;Yoo, Young-Seuck;Joung, Jae-Woo;Oh, Yong-Soo;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.101-107
    • /
    • 2007
  • Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.

Self-sensing measurement of piezo inkjet and its Applications (피에조 잉크젯의 셀프 센싱 검출 및 응용)

  • Kwon, Kye-Si;Kim, Wou-Sik;Kim, Sang-Il;Shin, Seung-Joo;Kim, Seong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.366-372
    • /
    • 2007
  • Self-sensing measurement of piezo inkjet and its application are discussed. The pressure wave inside the inkjet dispenser was measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially available laser vibrometer. Here, two applications using self-sensing signal were discussed: waveform design for high speed jetting and condition monitoring. For waveform design, two pulse waveform was designed based on self-sensing signal such that the pressure wave after droplet formation can be minimized. For condition monitoring, self-sensing signal was shown to be effective in detecting air bubble trapped in inkjet printhead.

  • PDF

Piezo-driven inkjet printhead monitoring system (압전 잉크젯 헤드 모니터링 시스템)

  • Lee, Byeung-Leul;Kim, Sang-Il
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.