• Title/Summary/Keyword: ink layer

Search Result 163, Processing Time 0.021 seconds

THE EFFECTS OF ND:YAG LASER AND IRRIGANTS ON CANAL SEALING ABILITY (근관치료시 Nd:YAG Laser 사용과 세척액에 따른 치근단 폐쇄효과의 비교)

  • Kim, Jin-Woon;Lee, Hee-Ju;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.307-315
    • /
    • 2001
  • The application of Nd:YAG laser and irrigants to the root surface can change its surface configurations. The purpose of this study was to investigate the effects of Nd:YAG laser and irrigants on the apical seal of obturated canals. In this study, 66 single rooted teeth were randomly assigned to 4 group of 14 teeth each. 8 teeth were served us positive and negative controls. The teeth were divided into 6 groups as follows. Group A: Nd:YAG laser, 5% NaOCl + Rc-prep Group B: Nd:YAG laser, Saline Group C: 5% NaOCl + Rc-prep Group D: Saline Group E: Positive control Group F: Negative control 66 teeth were instrumented using Maillefer ProFile$^{\circledR}$ (Orifice Shapers, .04 taper, .06 taper Dentsply, Switzerland). Two of each group were selected at random, and the canal wall surfaces were examined under a SEM. 12 teeth of each group were obturated using by lateral condensation technique. Specimens were immersed in india ink for 7days, decalcified by 10% nitric acid, dehydrated by 75. 80. 85, 90, 95 and 100% alcohol in order cleared by methyl salicylate and then measured of dye penetration with stereomicroscope($\times$15 magnification) and Image Pro plus. The data were analyzed statistically by one-way ANOVA test and Duncan's Multiple Range test. The results were as follows : 1. The mean leakage was 0.128$\pm$0.376 for group A, 0.237$\pm$0.325 for group B, 0.397$\pm$0.468 for group C, 0.586$\pm$0.402 for group D, and there were statistically significant differences between group A and group D, group B and group D. (p<0.05). 2. Group A had better sealing ability than Group C, but there was statistically no significant differences. (p>0.05). 3. Group B had better sealing ability than Group D and there was statistically significant difference. (p<0.05). 4 Group A had better sealing ability than Group B, but there was statistically no significant difference. (p>0.05). 5. Group C had better sealing ability than Group D, but there was statistically no significant difference. (p>0.05). 6. As a result of observation under SEM, Smear layers were removed in Group A, B. but Smear layers were partially removed and smear plugs were remained in Group C, Smear layers were not removed in Group D. To be specially, Melting of smear layer were showed in Group C. 7. These results suggests that the laser has a potential in reducing the apical microleakage of obturated canals.

  • PDF

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

A Study on the Control of Hygroscopicity and Hardness in Polymer Surfaces (고분자 표면의 흡습성 및 경도 제어 연구)

  • Jinil Kim;Young Nam Jung;Doa Kim;Myung Yung Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.86-90
    • /
    • 2023
  • The packaging of electronic devices performs a protective function to ensure that their durability and reliability are not affected by changes in the operating environment caused by external factors. Recent advances in materials have led to ongoing research into bonded packaging of heterogeneous materials such as polymers and inorganic materials in electronic devices. In this packaging process, it is important to have a binding that joins the materials and ensures the operating environment, which includes adhesion to the substrate, corrosion and oxidation resistance through moisture removal, and durability. In this study, the hygroscopicity of the coating layer by modifying the polymer surface based on PVA was evaluated by controlling and measuring the contact angle, and the adhesion was confirmed by applying water-based ink and testing according to ASTM_D3363. For the durability of the polymer surface, the IPL post-treatment process was used to improve the hardness and toughness against applied voltage, and the pencil hardness test and nanoindentation test were conducted. Through this, we analyzed and proposed solutions to ensure the reliability and durability of polymer devices in polymer microfabrication against environmental factors such as moisture, temperature fluctuations and adhesion, and surface abrasion.