• Title/Summary/Keyword: injection-limited current

Search Result 36, Processing Time 0.037 seconds

Analysis of Switching Transient State characteristis Based on Space charge Overlapping Model (공간전하중첩 모델에 의한 스위칭과도장태 특성해석)

  • 정홍배;박창엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 1981
  • In this study, a numerical theory based on space charge overlapping model and experiments on the propriety of its theory were carried out to analyze the switching transient characteristic in amorphous coalcogenide thin film. Theoretical and experimental as well as analytical investigations were carried out on the switching behaviour in a transient state arising from a voltage pulse applied to amorphous chalcogenide thin films at room temperature. The results can be explained in terms ot a simple theoretical model of the electronic characteristics of switching. The injection of carriers are necessary to initiate the switching action and injected carriers contribute to the current flow as a space-charge limited current(SCLC) The proposed charge controlled switching characteristics can be explained by double injection space charge overlapping model.

  • PDF

Dark Conductivity in Semi-Insulating Crystals of CdTe:Sn

  • Makhniy, V.P.;Sklyarchuk, V.M.;Vorobiev, Yu.V.;Horley, P.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.243-248
    • /
    • 2015
  • We prepared semi-insulating CdTe for radiation detectors by isothermal annealing of single crystals grown by Bridgeman technique in a sealed quartz container filled with Sn vapor. The resistivity of CdTe:Sn samples thus obtained was of order of $10^{10}Ohm{\cdot}cm$ at room temperature with electrons lifetime of $2{\times}10^{-8}$ s, which is appropriate for the applications desired. Analysis of electric transport characteristics depending on temperature, sample thickness and voltage applied revealed the presence of traps with concentration of about $(4-5){\times}10^{12}cm^{-3}$ with the corresponding energy level at 0.8 - 0.9 eV counted from the bottom of conduction band. The conductivity was determined by electron injection from electrodes in space charge limited current mode.

Probe-based Charge Injection Study of DNA Charge Transfer for Applications to Molecular Electro-optic Switching (전극 기반의 전하 주입을 통한 DNA 전하수송 특성 측정)

  • Ryu, Ho-Jeong;Kim, Hee-Young;Kim, Dong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.53-59
    • /
    • 2011
  • Charge transfer through DNA oligonucleotides has been investigated for potential applications of DNA into molecular electrooptic switching devices. Electrons were injected using gold electrode probes where DNA oligomers were adsorbed that are separated in medium. The results show that increased adsorption of DNA reduces the ionization current due to the combined effect of charge transfer through DNA and surface-limited charge transport. The probe-based charge injection was extended to examine the capability of extinguishing fluorescence of Cy3 dye molecules attached to DNA. It is expected that the results may be employed to implementing a novel electrooptic switching device based on DNA molecules.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Current advances in adenovirus nanocomplexes: more specificity and less immunogenicity

  • Kang, Eun-Ah;Yun, Chae-Ok
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.781-788
    • /
    • 2010
  • An often overlooked issue in the field of adenovirus (Ad)-mediated cancer gene therapy is its limited capacity for effective systemic delivery. Although primary tumors can be treated effectively with intralesional injection of conventional Ad vectors, systemic metastasis is difficult to cure. Systemic administration of conventional naked Ads leads to acute accumulation of Ad particles in the liver, induction of neutralizing antibody, short blood circulation half-life, non-specific biodistribution in undesired organs, and low selective accumulation in the target disease site. Versatile strategies involving the modification of viral surfaces with polymers and nanomaterials have been designed for the purpose of maximizing Ad anti-tumor activity and specificity by systemic administration. Integration of viral and non-viral nanomaterials will substantially advance both fields, creating new concepts in gene therapeutics. This review focuses on current advances in the development of smart Ad hybrid nanocomplexes based on various design-based strategies for optimal Ad systemic administration.

Deposition mechanism of $Bi_4Ti_3O_{12}$ films on Si by MOCVD and property improvement by pulse injection method (MOCVD $Bi_4Ti_3O_{12}$ 박막의 실리콘 위에서의 증착기구 및 유기 금속원료의 펄스주입법에 의한 박막 특성 개선)

  • 이석규;김준형;최두현;황민욱;엄명윤;김윤해;김진용;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.373-378
    • /
    • 2000
  • There was a great difference in the formation kinetics of $TiO_2$ and $Bi_2O_3$ on silicon, but the growth of bismuth titanate (BIT) thin film was mainly limited by the formation of $TiO_2$. As a result, the BIT film was easy to be lack of bismuth. The pulse injection metalorganic chemical vapor deposition (MOCVD) process was introduced in order to overcome this problem by recovering the insufficient bismuth content in the film. By this pulse injection method, bismuth content was increased and also the uniform in-depth composition of the film was attained with a abrupt $Bi_4Ti_3O_{12}/Si$ interface. In addition, the crystallinity of $Bi_4Ti_3O_{12}$ thin film prepared by pulse injection process was greatly improved and the leakage current density was lowered by 1/2~1/3 of magnitude. Clockwise hysteresis of C-V was observed and the ferroelectric switching was confirmed for $Bi_4Ti_3O_{12}$ film deposited by pulse injection method.

  • PDF

Autologous Fat Transfer in Lupus Panniculitis Facial Lipoatrophy

  • Kongkunnavat, Natthapong;Prathyajuta, Jirapat;Tonaree, Warangkana
    • Archives of Plastic Surgery
    • /
    • v.49 no.4
    • /
    • pp.527-530
    • /
    • 2022
  • Lupus panniculitis (LP) often presents with tender nodules and intermittent ulcers that then heal with scarring and lipoatrophy. The current mainstay of treatment is medical treatment. Research regarding the treatment of lipoatrophy from LP with autologous fat grafting is limited. We would like to share our experience in this rare case, which was treated with autologous fat transfer. A 48-year-old female presented with erythematous plaque, tender nodules, and ulcers following by a depression of the lesion at the left temporal area. The patient also had indurated erythematous plaque at her left cheek. Both lesions were aggravated by sunlight exposure. After several investigations, she was diagnosed as LP with secondary lipoatrophy and tumid lupus erythematosus at her left temporal and left cheek, respectively. She received antimalarial drug and topical steroids. The patient underwent two sessions of autologous fat transfer. She was satisfied with the volume and contour improvement in the scar following the injection of 8 and 3.7 mL of fat. Furthermore, the patient reported the remission of tender nodules and ulcers since the first fat graft injection. In conclusion, the autologous fat transfer is a simple and effective treatment for lipoatrophy and scar secondary to LP with promising results.

Lower the Detection Limits of Accelerator Mass Spectrometry

  • John A., Eliades;Song, Jong-Han;Kim, Jun-Gon;Kim, Jae-Yeol;O, Jong-Ju;Kim, Jong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF