• 제목/요약/키워드: injection nozzles

검색결과 111건 처리시간 0.026초

생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증 (Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator)

  • 강태호;뉘엔 타인;임영일;김성준;엄원현;유경선
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.630-638
    • /
    • 2009
  • 생활폐기물 소각장에서 발생되는 질소산화물($NO_x$)을 저감을 위한 요소용액 이용 선택적 무촉매 환원(SNCR: selective non-catalytic reduction) 상용화 공정에 대하여 전산유체역학(CFD: computational fluid dynamics) 모델을 개발하였고, 이 모델은 현장 실험결과로 검증되었다. 저 농도 일산화탄소와 12% 과잉공기 조건에서 요소와 질소산화물간의 7개 화학반응식과 액적의 증발과정을 포함하는 3차원 난류반응 흐름 CFD 모델은 소각로에 설치된 SNCR 공정의 유체역학 모사를 위하여 사용하였다. 본 SNCR 공정에서는 정면 노즐 1개와 측면 노즐 2개를 사용하여 2차 연소로 내에 요소용액을 공기와 함께 분사하였다. 3개의 노즐에 동일유량으로 NSR=1.8에서 요소용액과 공기를 분사할 경우, 출구온도는 현장 실험값과 모사값이 일치하며, 질소산화물 저감효율은 실험에서는 57%, CFD 모사에서는 59%를 보여주었다. 각 노즐 별 분사유량의 비율을 변화하면서 수행된 CFD 모사 결과에서는 3개의 노즐에 동일 유량을 분사하는 것보다 정면 1개 노즐에 측면노즐 유량의 2배를 분사하는 것이 약 8% 높은 질소산화물저감 효율을 보여주었다.

공기분사 및 회전 롤러를 이용한 옥수수 포엽 제거장치의 시험 (Evaluation of an Air-jet and Roller Type Corn-husker)

  • 박회만;조광환;홍성기;이선호
    • Journal of Biosystems Engineering
    • /
    • 제35권3호
    • /
    • pp.163-168
    • /
    • 2010
  • With income growth and "well-being" trends, sales of corn has been increased recently. Corns are processed at processing facilities on the main production site. Corn processing steps include removing bract, steaming, vacuum packing, and storing. To replace manual corn bract removing, some bract removing machines were imported and used. However, the machines were abandoned shortly, because of high damaging ratio of corns. In this research, factors of successful bract removing was studied with rotating rollers and air-injection nozzles to develop corn bract removing system. The test device was composed of a cylindrical roller, an air spray nozzle, a regulator, and a motor. Designing factors were roller type, diameter of air spraying nozzle, spraying angle, and spraying pressure. The measured factors were bract removing rate and damaging rate. It was found that optimum cylindrical roller surface shape was cylindrical roller and linear grove roller. This roller shape produced lowest damaging rate. Test results of the efficacy of preprocessing showed that the air spraying after preprocessing produced highest performance. The rotational speed and inclination of the roller didn't affect the bract removing performance. Optimum injection angle of the air jet nozzle was $70^{\circ}$. To increase bract removing rate and to reduce corn damage, required injection pressure and injection nozzle diameter were decided to less than 0.4 MPa and 2.5 mm, respectively. More than 3 times of nozzle passing produced good bract removing performance and there were no significant difference between the number of passing times.

A numerical method for the study of fluidic thrust-vectoring

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권4호
    • /
    • pp.367-378
    • /
    • 2016
  • Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.

스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System)

  • 배명환;하정호
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정 (Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump)

  • 조승환;유승헌;이범호;김동현;이대엽
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

공작기계용 고속주축계의 오일에어윤활특성에 관한 연구 (I) 공급유량, 주축회전수 및 주축계 구조의 영향 (Oil-Air Lubrication Characteristics of a High Speed Spindle System for Machine Tools(I) Effect of Oil Supply Rate, Rotational Spindle Speed and Spindle System Structure)

  • 김석일;최대봉;박경호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.351-358
    • /
    • 1993
  • Recently a high speed spindle system for machine tools has attracted considerable attention to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices and so on. And a lubrication experiment for evaluating the performance of the spindle system is carried out. Especially, in order to establish the lubrication conditions related to the development of a high speed spindle system, the effects of oil supply rate, rotational spindle speed and so on are studied and discussed on the bearing temperature rise, bearing temperature distribution and frictional torque. And the effect of spindle system structure on the bearing temperature distribution is investigated.

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • 배명완
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF

스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구 (A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

고로의 연소효율을 높이기 위한 화염영상 정밀 검출 및 화염제어 (Flame image precise measurement and flame control to raise combustion efficiencies of a blast furnace)

  • 김재열;이승철;곽남수;한재호
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.8-14
    • /
    • 2014
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) was developed for iron making. The combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational conditions are numerically predicted to determine the performance levels with regard to different locations of the nozzles in a blast furnace. A variety of parameters, including the pulverized coal quantities, oxygen amounts, inlet temperatures of the tuyeres, and the mass flow rate of coal carrier gas are taken into consideration. Also, in order to develop greater efficiency than those of existing coal injection systems, this study applies a flame measurement system using a charge-coupled device (CCD) camera and a frame grabber. It uses auto sampling algorithms from the flame shape information to determine the device for the optimal location control for PCI. This study finds further improvements of the blast furnace performance via the control of the PCI locations.