• Title/Summary/Keyword: injection modeling

Search Result 298, Processing Time 0.027 seconds

Speed Control for Low Speed Diesel Engine by Hybrid F-NFC (Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어)

  • Choi, G.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

A Study on the Ontology-based Design Process Modeling (온톨로지 기반 설계 프로세스 모델링에 관한 연구)

  • Kim J.K.;Kang M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.632-636
    • /
    • 2005
  • Design process model represents how a design project proceeds. It encompasses the individual activities of design, their precedence relationships, and the relevant information related to each activity. In contrast to the conventional visual representation methods, ontology-based process model is machine-readable, and therefore it can be implemented in a software system without repeating the whole steps of coding, compiling and link. This paper proposes a framework for design process ontology that defines the relevant objects and attributes in the design process as well as the relationships between them. An example for injection mold design process is shown to explain the substance of the design process model.

  • PDF

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

A Study on The Design of The Self-Checking Comparator Using Time Diversity (시간 상이점을 이용한 자체 검진 비교기의 설계에 관한 연구)

  • 신석균;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.270-279
    • /
    • 1998
  • This paper presents the design of self-checking comparator using the time diversity and the application to 8 bit CPU for the implementation of fault tolerant computer system. this self-checking comparator was designed with the different time Points in which temporary faults were raised by electrical noise between duplicated functional blocks. also this self-checking comparator was simulated in the method of the fault injection using 4 bit shift register counter. we designed the duplicated Emotional block and the self-checking comparator in the single chip using the Altera EPLD and could verify the reliability and the fault detection coverage through the modeling of temporary faults ,especially intermittent faults. at the results of this research, the reliability and the fault detection coverage were implemented through the self-checking comparator using the time diversity.

  • PDF

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Analyzing the Change of Surface Water and Groundwater Systems Caused by Tunnel Construction in Northern Ulsan City (울산시 북구 지역 터널 굴착에 의한 지표수계 및 지하수계 변화 분석)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Lee, Chung-Mo;Lim, Woo-Ri;Yun, Sul-Min;Park, Heung-Jai
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.81-99
    • /
    • 2018
  • Excessive groundwater discharge by tunneling and tunnel operation can lead to groundwater exhaustion and ground subsidence. Therefore, it is very important to evaluate environmental impact and to establish mitigation measures of the impact related to tunnel excavation based on hydrogeological and modeling approaches. This study examined the depletion of surface reservoirs and valley water due to tunnel excavation through field survey, water quality analysis, tracer test, and groundwater modeling. As a result of field water quality test, the concentration of chemical constituents in groundwater discharge into the tunnel is slightly higher than that of valley water. By the result of laboratory water analysis, both valley water and the groundwater belong to $Ca^{2+}+HCO_3{^-}$ type. Tracer test that was conducted between the valley at the injection point and the tunnel, indicates valley water infiltration into the ground and flowing out to the tunnel, with maximum electrical conductance changes of $70{\mu}S/cm$ in the first test and of $40{\mu}S/cm$ in the second test. By groundwater modeling, the groundwater discharge rate into the tunnel during tunnel construction is estimated as $4,942m^3/day$ and groundwater level recovers in 3 years from the tunnel completion. As a result of particle tracking modeling, the nearest particle reaches the tunnel after 6 hours and the farthest particle reaches the tunnel after 9 hours, similarly to the case of the field trace test.

Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

  • Zhu, LiQin;Yang, JianWei;Zhang, Yuan;Wang, YongMing;Zhang, JianLei;Zhao, YuanYuan;Dong, WeiLin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra- abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, $C_{max}$ was $11.151{\mu}g/mL$ at 5 min after the intravenous injection and $t_{1/2}$ was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

A Study on 3D Printer Using Polygon Mirror (폴리곤 미러를 이용한 3D 프린터에 관한 연구)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk;Kim, Wan-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.142-144
    • /
    • 2016
  • Recent promising technologies of the manufacturing sector interest, and the interest in 3D printing that is expected to cause a huge ripple effect rapidly, and various types of products advertised in accordance with the falling price of 3D printers is spreading. However, the personal 3D printers that are currently being advertised is used for Injection output of the simple type that does not require a high processing precision in accordance with the limitation of technical performance, and consumer satisfaction is very low. In this paper, we propose a 3D printer, 3D precision to overcome existing limitations in the way the printer's high SLA 3D printer that combines injection method and the LSU (Laser Scanning Unit) in the office laser printer polygon mirror scanning method. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the existing entry-level 3D printer.

  • PDF