• Title/Summary/Keyword: injected air temperature

Search Result 132, Processing Time 0.022 seconds

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Improvement of Compression Ignition for Gasoline Fuel Injected in the Diesel Engine (디젤기관에 분사되는 가솔린연료의 압축착화성 향상)

  • Choi, Yoon-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this study, it made to run conventional single direct injection(DI) diesel engine, which adapted bulk combustion system not following spark ignition system without any ignition apparatus. It was heated and controlled inlet-air into conventional single DI diesel engine. The maximum value of brake thermal efficiency was at 35 region of air-fuel ratio. On the contrary, when the region of air-fuel ratio leaner than 35, brake thermal efficiency was decreased suddenly. And brake thermal efficiency was increased as much as inlet-air heating temperature increased. So, when air-fuel ratio was decreased and inlet-air heating temperature was higher, the engine was in optimal operation condition.

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis (이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향)

  • Ku, Kun Woo;Chung, Kyung Yul;Yoon, Hyun Jin;Seok, Ji Kwon;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

Characteristics of the Spray and Combustion in the Liquid Jet (수직 분사되는 연료제트의 분무 및 연소특성)

  • 윤현진;문수연;손창현;이충원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liquid jet injected transversely into the subsonic vitiated airstream, which Is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the sufficient penetration must be considered to make a stable flame.

Reduction of Nitrogen Oxides from Fuel Nitrogen in New Fuelling System

  • 전영남;채재우
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.885-892
    • /
    • 1996
  • The effects of NOx reduction by advanced fuel staging in a small scale combustor (6.6 kWT) have been investigated using propane gas flames laden with ammonia as fuel-nitrogen. The variables which had the greatest influence on NOx reduction were temperature, reducing stoichiometry (relate to main combustion zone stoichiometry, air fraction and reburning fuel fraction) and residence time of reducing zone. NOx reduction was best at the reburning zone temperature of above 1,000 ℃ and reburning zone stoichiometry was 0.85. In terms of residence time of the reburning zone, NOx reduction was effective when burnout air was injected at the point where the reburning zone had been already established. In the advanced fuel staging NOx reduction was relatively large at the burning of higher Fuel-N concentration in the fuel. Under optimum reburning conditions, fuel nitrogen content had a relatively minor impact on reburning efficiency.

An Experimental Study on the Measurement of Water Surface Discharge Temperature of High-Temperature Bubble Injected into Cylindrical Acrylic Water Tank (원통 아크릴 수조로 주입된 고온 기포의 수면 배출 온도 측정에 관한 실험적 연구)

  • SeokTae Yoon;YongJin Cho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.

A Study on the Fuel Injection System Simulating a Vehicle Driven with FTP-75 Mode for Cold Transition Period (FTP-75 냉간 주행 모드로 운전하는 차량의 연료분사 모사시스템에 관한 연구)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • A fuel injection system which is operated with a real vehicle driving simulation was developed as an alternative to a vehicle test for the fuel injectors. The sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in FTP-75 mode in a chassis dynamometer. The imperative sensor signals of the throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and cooling water and intake air temperature were reconstructed using FPGA DAQ boards and a PXI computer. The scanning results showed good agreement with the input signals that were reconstructed. The ECU HILS system operated successfully to drive six fuel injectors, which injected fuel in the same pattern as if they were mounted in the vehicle driven in FTP-75 mode. Also, the fuel injection system developed in this research shows the possibility of application in evaluating the characteristics of fuel injection rate for injectors according to properties of injected fuel with the real driving mode of vehicles.

Spray and Combustion Characteristics of a Dump-type Ramjet Combustor

  • Lee, Choong-Won;Moon, Su-Yeon;Sohn, Chang-Hyun;Youn, Hyun-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2019-2026
    • /
    • 2003
  • Spray and combustion characteristics of a dump-type ram-combustor equipped with a V-gutter flame holder were experimentally investigated. Spray penetrations with a change in airstream velocity, air stream temperature, and dynamic pressure ratio were measured to clarify the spray characteristics of a liquid jet injected into the subsonic vitiated airstream, which maintains a highly uniform velocity and temperature. An empirical equation was modified from Inamura's equation to compensate for experimental conditions. In the case of insufficient penetration, the flame in the ram-combustor was unstable, and vice versus in the case of sufficient penetration. When the flame holder was not equipped, the temperature at the center of the ram-combustor had a tendency to decrease due to the low penetration and insufficient mixing. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length of the combustor became longer and the flame holder was equipped. Combustion efficiency increased when the length of the combustor was long and the flame holder was equipped. Especially, the effect of the flame holder was more dominant than that of the combustor length in light of combustion efficiency.