• 제목/요약/키워드: injectable bone substitute

검색결과 9건 처리시간 0.028초

주사형 조직공학재료를 이용한 골형성 (BONE FORMATION USING INJECTABLE TISSUE-ENGINEERING MATERIALS)

  • 최병호;박동준;주석강;허진영;김병용;이승호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제29권6호
    • /
    • pp.374-378
    • /
    • 2003
  • Aim : Several injectable materials have been used in the application of osteogenic bone substitute; however, nothing has won universal acceptance. This study was performed to investigate whether chitosan-alginate gel/MSCs/BMP-2 composites are potentially injectable materials for new bone formation. Material and Methods : The composites were injected into the subcutaneous space on the dorsum of the nude mouse to investigate whether new bone would be tissue engineered in the mouse. The composites were examined histologically over a 12-week period. Results : The composites implanted in the mouse were able to tissue engineer new bone, and the newly formed bone consisted of trabecular bone and calcified bone matrix. Conclusions : The present study shows that chitosan-alginate gel/MSCs/BMP-2 composites have the potential to become real injectable materials for new bone formation.

Effect of Bioactive Glass Addition to the TTCP/DCPA Based Injectable Bone Substitute for Improved Biocompatibility

  • Sadiasa, Alexander;Sarkar, Swapan Kumar;Franco, Rose Ann;Yang, Hun-Mo;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2011
  • In this work, the effect of the addition of bioactive glass in the biocompatibility and mechanical behavior of conventional TTCP/DCPA based bone cement were investigated. The cement was initially modified with chitosan and HPMC which cross-linked with citric acid to improved mechanical properties.The injectable bone substitutes were further modified by adding varying amounts of bioactive glass (0%, 10%, 20% and 30%) and its effects on the biocompatibility of the material were studied. Afterbio-glass powders were mixed with the optimized composition for HPMC and citric acid content,the IBS was incubated at $37^{\circ}C$ at different time intervals and showed progressive formation of HAp with increasing time. Mechanical properties like Vickers hardness and compressive strength were found to increase with the increasing amount of bioactive glass addition and that setting time was shortened. The fabricated IBS morphologies were further characterized using SEM. MTT assay was performed to check the cell cytotoxicity and cell proliferation for 1, 3 and 5 days. Cell morphology, adhesion and proliferation behavior of cell in the IBS by culturing MG-63 cells on the IBS for 20, 60 and 90 mins and 1, 3 and 5 days was also investigated. All the results showed increasing biocompatibility as the bioglass content increased. MTT results found the materials to be cytocompatible and SEM images showed that cells attached and proliferated successfully.

  • PDF

Reinforcement of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Citric Acid and Hydroxypropyl-Methyl-Cellulose

  • Thai, Van Viet;Kim, Min-Sung;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • In this study, we investigated a calcium phosphate-calcium sulfate injectable bone substitute (IBS) with organic reinforcement of chitosan, citric acid and hydroxypropyl-methyl-cellulose (HPMC). The powder component of IBS consisted of tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dihydrate (CSD). The liquid component was a solution of citric acid and chitosan. The effect of HPMC in terms of setting time, compressive strength and apatite forming ability on this IBS was investigated. The mass content of HPMC in liquid phase was varied in array of 0%, 2%, 3% and 4%. The setting times obtained between 20 and 45 minutes. Compressive strength was achieved over 20 MPa after incubation at 370C and in 100% humidity for 28 days. Porosities were evaluated in relation with compressive strength. Elastic moduli of the 28 days after-incubation IBS were obtained around 4GPa

  • PDF

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Application of a paste-type acellular dermal matrix for coverage of chronic ulcerative wounds

  • Jeon, Minseok;Kim, So Young
    • Archives of Plastic Surgery
    • /
    • 제45권6호
    • /
    • pp.564-571
    • /
    • 2018
  • Background Chronic wounds occur due to failure of the normal healing process, associated with a lack of deposition of cellular components and a suitable microenvironment such as the extracellular matrix (ECM). Acellular dermal matrix (ADM) is viewed as an ECM substitute, and a paste-type ADM has recently been introduced. We hypothesized that CGPaste, an injectable paste-type ADM, could serve as a scaffold and promote wound healing. Methods We retrospectively studied seven patients in whom CGPaste was applied between 2017 and 2018, who had pressure ulcers, necrotizing fasciitis, diabetic foot ulcers, traumatic defects, and osteomyelitis. The goal of applying CGPaste was to achieve complete wound healing with re-epithelialization or growth of granulation tissue, depending upon the wound bed status. CGPaste was injected based on the wound size along with the application of a dressing. Results Four of the seven patients showed granulation tissue on their wound bed, while the other three patients had a bony wound bed. The mean wound area was $453.57mm^2$ and the depth was 10.71 mm. Wound healing occurred in five of the seven patients (71.43%). The mean duration of complete healing was 2.4 weeks. Two patients showed failure due to paste absorption (29.57%); these patients had wound beds comprising bone with relatively large and deep wounds ($40{\times}30$ and $30{\times}20mm^2$ in area and 15 and 10 mm in depth). Conclusions CGPaste is an effective option for coverage of small and deep chronic wounds for which a flap operation or skin grafting is unfeasible.

경화액의 농도와 온도가 인산칼슘시멘트의 유변학적 성질에 미치는 영향에 관한 연구 (The Effect of Temperature and Concentration of Setting Solution on the Rheological Properties of Injectable Calcium Phosphate)

  • 유현미;장석우;박동성
    • 구강회복응용과학지
    • /
    • 제25권1호
    • /
    • pp.73-82
    • /
    • 2009
  • 인산칼슘시멘트(calcium phosphate cement)는 우수한 생체친화성 및 골전도성을 가지고 있어 골이식재로 많이 사용되어 왔다. 인산칼슘시멘트의 중요한 물성 중 하나인 흐름성은 유변학적 성질을 측정하여 확인할 수 있지만, 인산칼슘시멘트의 유변학적 성질에 관한 연구는 많이 진행되어 있지 않다. 이 실험의 목적은 인산칼슘시멘트를 hydroxyprophyl methylcellulose (HPMC) 수용액 및 polyacrylic acid (PAA) 수용액과 각각 혼합하여 주사용 인산칼슘시멘트를 만들고, 각각의 용액의 농도(35%와 17.5%의 HPMC, 2%와 1%의 PAA)와 온도($25^{\circ}C$ and $37^{\circ}C$)가 유변학적 성질에 미치는 영향을 연구하기 위한 것이다. 실험에 사용된 인산칼슘시멘트는 dicalcium phosphate dihydrate (DCPD)이며 유변학적 성질은 자동화된 rheometer를 사용하여 측정하였다. 통계분석은 Mann-whitney test를 사용하였다. 높은 농도의 경화액과 혼합된 인산칼슘시멘트는 (35% HPMC와 2% PAA)는 낮은 농도의 경화액과 혼합된 인산칼슘시멘트 (17.5% HPMC와 1% PAA)보다 각각 유의성 있게 높은 점도를 보였다. HPMC 수용액과 혼합된 인산칼슘시멘트는 $37^{\circ}C$에서 $25^{\circ}C$보다 유의성 있게 높은 점도를 보였다. PAA 수용액과 혼합된 인산칼슘시멘트는 $37^{\circ}C$에서 $25^{\circ}C$보다 낮은 점도를 보였으나 통계적 유의성은 없었다. 또한 실험에 사용된 모든 종류의 인산칼슘시멘트는 의사가소성(pseudoplastic)을 보였다.