• Title/Summary/Keyword: initialization method

Search Result 187, Processing Time 0.034 seconds

Transmission Power Range based Sybil Attack Detection Method over Wireless Sensor Networks

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.676-682
    • /
    • 2011
  • Sybil attack can disrupt proper operations of wireless sensor network by forging its sensor node to multiple identities. To protect the sensor network from such an attack, a number of countermeasure methods based on RSSI (Received Signal Strength Indicator) and LQI (Link Quality Indicator) have been proposed. However, previous works on the Sybil attack detection do not consider the fact that Sybil nodes can change their RSSI and LQI strength for their malicious purposes. In this paper, we present a Sybil attack detection method based on a transmission power range. Our proposed method initially measures range of RSSI and LQI from sensor nodes, and then set the minimum, maximum and average RSSI and LQI strength value. After initialization, monitoring nodes request that each sensor node transmits data with different transmission power strengths. If the value measured by monitoring node is out of the range in transmission power strengths, the node is considered as a malicious node.

Medoid Determination in Deterministic Annealing-based Pairwise Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.178-183
    • /
    • 2011
  • The deterministic annealing-based clustering algorithm is an EM-based algorithm which behaves like simulated annealing method, yet less sensitive to the initialization of parameters. Pairwise clustering is a kind of clustering technique to perform clustering with inter-entity distance information but not enforcing to have detailed attribute information. The pairwise deterministic annealing-based clustering algorithm repeatedly alternates the steps of estimation of mean-fields and the update of membership degrees of data objects to clusters until termination condition holds. Lacking of attribute value information, pairwise clustering algorithms do not explicitly determine the centroids or medoids of clusters in the course of clustering process or at the end of the process. This paper proposes a method to identify the medoids as the centers of formed clusters for the pairwise deterministic annealing-based clustering algorithm. Experimental results show that the proposed method locate meaningful medoids.

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Robustness of 2nd-order Iterative Learning Control for a Class of Discrete-Time Dynamic Systems

  • Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.363-368
    • /
    • 2004
  • In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed. A numerical example is given to show the robustness and convergence property according to the learning parameters.

Initialization of the Radial Basis Function Network Using Localization Method

  • Kim, Seong-Joo;Kim, Yong-Taek;Jeon, Hong-Tae;Seo, Jae-Yong;Cho, Hyun-Chan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.163.1-163
    • /
    • 2001
  • In this paper, we use time-frequency localization analysis method to analize the target function and the area of the target space. When we analize the function with the time and frequency axis simultaneously, the characteristic of the function is shown more precisely and the area is covered by a certain block. After we analize the target function in the time-frequency space, we can decide the activation functions and compose the hidden layer of the RBFN by choosing the radial basis function which can represent the characteristic of the target function, RBFN made by this method, designs the good structure proper to the target problem because we can decide the number of hidden node first.

  • PDF

Illumination Invariant Face Tracking on Smart Phones using Skin Locus based CAMSHIFT

  • Bui, Hoang Nam;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 2013
  • This paper gives a review on three illumination issues of face tracking on smart phones: dark scenes, sudden lighting change and backlit effect. First, we propose a fast and robust face tracking method utilizing continuous adaptive mean shift algorithm (CAMSHIFT) and CbCr skin locus. Initially, the skin locus obtained from training video data. After that, a modified CAMSHIFT version based on the skin locus is accordingly provided. Second, we suggest an enhancement method to increase the chance of detecting faces, an important initialization step for face tracking, under dark illumination. The proposed method works comparably with traditional CAMSHIFT or particle filter, and outperforms these methods when dealing with our public video data with the three illumination issues mentioned above.

  • PDF

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.

PRACTICAL WAYS TO CALCULATE CAMERA LENS DISTORTION FOR REAL-TIME CAMERA CALIBRATION

  • Park, Seong-Woo;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, we address practical methods for calculating camera lens distortion for real time applications. Although the lens distortion problem can be easily ignored for constant-parameter lenses, in the field of real-time camera calibrations, for zoom lenses a large number of calculations are needed to calculate the distortion. However, if the distortion can be calculated independently of the other camera parameter, we can easily calibrate a camera without the need for a large number of calculations. Based on Tsai's camera model, we propose two different methods for calculating lens distortion. These methods are so simple and require so few calculations that the lens distortion can be rapidly calculated even in real-time applications. The first method is to refer to the focal length - lens distortion Look Up Table(LUT), which is constructed in the initialization process. The second method is to use the relationship between the feature points found in the image. Experiments were carried out for both methods, results of which show that the proposed methods are favorably comparable in performance with non-real full optimization method.

Segmentation of Medical Images Using Active Contour Models and Genetic Alogorithms (Active Contour Model과 유전 알고리즘을 이용한 의료 영상 분할)

  • 이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.457-467
    • /
    • 2000
  • In this paper, we propose the method to extract the anatomical objects in medical images using active contour models and genetic algorithms. The performance of active contour models is mostly decided by the optimization of active contour model's energy. So, we propose to use genetic algorithms to optimize the energy of active contour models. We experimented our proposed method on the femoral head medical images and proved that our method provides very acceptable results from any initialization of active contour models.

  • PDF