• Title/Summary/Keyword: initial concrete temperature

Search Result 167, Processing Time 0.024 seconds

Strength Development of High-Strength Concrete in Structure

  • Msuda, Yochihiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.31-45
    • /
    • 2000
  • Because of the high unit cement content in the concrete mix, major concrete temperature rises are observed in the initial stages of hardening in structural members with large cross-sections made of high-strength concrete. While this temperature rise in the initial stages of hardening contributes to the initial development of the concrete strength, it also causes thermal cracking and obstructs medium to long-term increases of the concrete strength. In the study reports below, investigations were made on the effects of the concrete temperature rise in the initial stages of hardening on the medium to long-term development of the strength of structural concrete between the ages of 28 and 91 days. In the study, comparisons were made, for example, between the compressive strength of a control specimen subjected to standard curing at 28 days and the compressive strength of core specimens taken from structural members, and observations were made on the methods of evaluating the concrete strength in structure, defined here as the compressive strength of core specimens at 91 days. The results obtained indicate that, when the maximum temperature of the concrete is the structure does not exceed $60^{\circ}C$, the concrete strength in structure at the age of long-term will generally be greater than the compressive strength of the standard-curing specimens at 28 days, allowing one to evaluate the strength of the structural concrete in terms of the compressive strength of the 28-days standard-curing specimens. When, on the other hand, the maximum temperature of the concrete in the structure exceeds $60^{\circ}C$, the strength in concrete structure may be smaller than the compressive strength of the 28-days standard-curing specimens, creating risks in the evaluation of the concrete strength in structure by latter.

  • PDF

Numerical modeling of slipforming operations

  • Lachemi, M.;Elimov, R.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 2007
  • Slipforming is a construction method in which the forms move continuously during concrete placement. This paper presents a numerical procedure based on the finite element method to simulate the thermal behavior of concrete during slipforming operations. The validity of the model was successfully tested by simulating a very complex but well documented field case of actual slipforming operations performed during the construction of an offshore concrete oil platform structure. The results obtained have been related to the shape of the concrete "hardened front" in the forms, which allows quick evaluation of the operation. The results of the numerical investigation have shown that the shape of the "hardened front" can be affected by the temperature of the fresh concrete and ambient conditions. For a given initial concrete temperature, there are limitations for the ambient temperature that, when exceeded, can create an unfavorable shape of the concrete "hardened front" in the forms. Similarly, for a given ambient temperature, the initial concrete temperature should not be fall below an established limit in order to avoid unfavorable shape of the "hardened front".

A Fundamental Study on the Strength Development in Cement Mortar under Initial Curing Temperature (초기양생온도에 따른 시멘트 모르터의 강도발현에 관한 기초적 연구)

  • 백민수;이영도;임남기;김성식;이종균;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.157-165
    • /
    • 1997
  • In this experiment, there is a purpose to analysis the relationship of feature of compressive strength after fixing of remarkable element under the condition of initial curing temperature. According to this experiment, we get to the fallow result. In case of highest curing temperature, 3-day-strength become high but last revelation of strength become low among the condition of initial curing temperature, the highest curing temperature have an effect on revelation of strength by the application of cumulative temperature, we can get the shape of revelation of strength.

  • PDF

And Experimetal Study for Concrete Strength Prediction by Maturity Concept (성숙도 개념을 이요한 콘크리트의 강도예측을 위한 실험적 연구)

  • 유청호;이주형;김태경;윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.143-150
    • /
    • 1997
  • The maturity concept was adopted to predict the strength of concrete, which was subjected to same temperature conditions and variable curing conditions. Penetration test and compressive test were conducted to measure the initial and final setting time and the compressible strength of concrete specimen, respectively. Also, the temperature and time were recorded at some intervals of time for calculating the maturity. The initial and final setting were delayed as the w/c ratio increased and curing temperature decreased. The activating energy decreased as the w/c ratio increased. The relationships at the relative strength and the maturity were proposed at different w/c ratio for the same temperature curing condition, and these were applied for the variable curing conditions. The results indicated that the difference between the strength of the proposed and the specimen was big at 1 days's age but quite similar after 3 day's age.

  • PDF

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.

Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics (기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토)

  • Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator (칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF

Experimental Study on Watertightness Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 사용한 콘크리트의 수밀특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Kim, Joung-Woo;Kim, Do-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.429-432
    • /
    • 2008
  • Large area members such as foundation concrete of underground structures in power plants have an effect on structural stability and durability of the structure due to danger of crack occurrence and shrinkage crack that occur owing to the difference of temperature by heat of hydration between inside and outside of the members at initial age. And a construction for waterproofness is performed additionally to protect marine structures from osmosis of seawater because the structures adjoin below the surface of sea. So, if a rise of the heat of hydration, crack, and corrosion of bars are controled effectively using a composite such as fluosilicate salt in concrete production process of a initial construction, expenses are cut down and construction hours are reduced by securing durability through improvement of watertightness. The property tests of adiabatic temperature by hydration are carried out at initial age about standard concrete and test concrete using a fluosilicate salt composite to evaluate an effect on improvement of watertightness for concrete structures in this study. And the experiments such as a permeability test of hardened concrete, a water absorption test, a compression strength test and a elongation test are carried out and the results from these are described.

  • PDF

Analysis of Early-age Property of JPCP Slab of Incheon International Airport (인천국제공항 줄눈콘크리트 슬래브의 초기재령 특성분석)

  • Sun, Ren Juan;Jeong, Jin-Hoon;Cheon, Sung-Han;Lim, Jin-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.335-339
    • /
    • 2007
  • A jointed plain concrete pavement(JPCP) slab was tested in Incheon International Airport construction work to study the early-age property of JPCP slab. The temperature and moisture data of the concrete slab had been collected and analyzed. The setting time of the concrete was decided by using the maturity method. The initial setting time is 2 hours 40 minutes after the placement of the slab. The investigation and analysis of the slab began from the initial setting time. The strains of different locations and different depths of the slab show different variation character.

  • PDF

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF