• Title/Summary/Keyword: inhibition of adhesion

Search Result 190, Processing Time 0.027 seconds

Sesquicillin, an Extracellular Matrix Adhesion Inhibitor, Inhibits the Invasion of B16 Melanoma Cells In vitro

  • Lee, Ho-Jae;Chun, Hyo-Kon;Chung, Myung-Chul;Lee, Choong-Hwan;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.119-121
    • /
    • 1999
  • Tumor cell interaction with the extracellular matrix is defined as the critical event of tumor invasion that signals the initiation of a metastatic cascade. Sesquicillin has been identified as an inhibitor of melanoma cell adhesion to the components of the extracellular matrix (ECM) in cultured broth of fungal strain F60063. Sesquicillin strongly inhibited the adhesion of B16 melanoma cells to laminin, fibronectin, and typeIV collagen. It also inhibited B16 melanoma cell invasion of reconstituted basement membrane Matrigel in vitro in a dose-dependent manner. These results suggest that sesquicillin is a new class of nonpeptidic ECM adhesion inhibitor having anti-invasive activity.

  • PDF

Factors Affecting Adhesion of Lactic Acid Bacteria to Caco-2 Cells and Inhibitory Effect on Infection of Salmonella Typhimurium

  • Lim, Sung-Mee;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1731-1739
    • /
    • 2012
  • In this study, seven strains isolated from mustard leaf kimchi were screened for their tolerance to simulated gastric and bile juices, the adhesive properties to Caco-2 cells, and the inhibition ability of Salmonella Typhimurium ATCC 29631 adhesion. Lactobacillus acidophilus GK20, Lactobacillus paracasei GK74, and Lactobacillus plantarum GK81, which were resistant to bile as well as gastric juices, possessed high bile-salt hydrolase (BSH) activity towards both sodium glycocholate and sodium taurocholate. The strongest in vitro adherence of $53.96{\pm}4.49%$ was exhibited by L. plantarum GK81 followed by L. acidophilus GK20 with adhesion levels of $40.72{\pm}9.46%$. The adhesion of these strains was significantly (p < 0.05) reduced after exposure to pepsin and heating for 30 min at $80^{\circ}C$. Addition of $Ca^{2+}$ led to a significant (p < 0.05) increase of the adhesion of L. acidophilus GK20, but the adhesion ability of L. plantarum GK81 was not different from the control by the addition of calcium. In the competition and exclusion experiment, the adhesion inhibition of S. Typhimurium by L. plantarum GK81 strain was much higher than the other strains. Moreover, the exclusion inhibition of S. Typhimurium by L. acidophilus GK20 was considerably high, although the inhibition activity of this strain was lower than L. plantarum GK81.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

Inhibition of Helicobacter pylori Adhesion by Acidic Polysaccharide Isolated from Artemisia capillaris

  • Woo, Jeung-S.;Ha, Byung-H.;Kim, Tae-G.;Lim, Yoon-Gho;Kim, Kyung-H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.853-858
    • /
    • 2003
  • Helicobacter pylori specifically adhere to host cells through a number of putative receptors and ligands, mainly based on carbohydrate-protein interactions. Polysaccharide fractions isolated from the leaves of Artemisia capillaris showed different inhibitory activities against H. pylori adhesion by using hemagglutination assay. Among these fractions, an acidic polysaccharide fraction FlA showed highly effective inhibitory activity, and its minimum inhibition concentration was 0.63 mg/ml. The inhibition results by the hemagglutination assay were consistent with those obtained by the enzymelinked glycosorbent assay, which was developed by the conjugation of horseradish peroxidase with fetuin, a sialic acid-containing glycoprotein which was specific to H. pylori adhesion. FlA contained the highest carbohydrate content among polysaccharide fractions, and no protein was detectable when further purified by gel filtration FPLC. Sugar composition analysis using GC revealed the highest amount of galacturonic acid among sugars, which suggests that FlA contains essentially acidic polysaccharides. Our data suggest that acidic polysaccharides may play an important role in the inhibition of H. pylori adhesion to host cells.

Adhesion Ability and Inhibition of Enterohemorrhagic E. coli O157:H7 Adhesion to Intestinal Epithelial Cells in Lactobacillus acidophilus (Lactobacillus acidophilus의 장 상피세포에 대한 부착능력 및 장 출혈성 대장균의 부착 억제 능력)

  • 김영훈;박순옥;한경식;오세종;유승권;김세헌
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • The ability of probiotics containing Lactobacillus acidophilus to adhere to the intestinal epithelium may play an important role in colonization of the gastrointestinal tract and preventing enteric pathogen such as enterohemorrhagic E. coli(EHEC O157:H7. In the study, we investigated the adhesion to human intestinal epithelial cells(HT-29) of strains of L. acidophilus(3 from human, 2 from pig, and 1 from calf). All of the tested strains of L. acidophilus were highly observed adhesion ability(from 10$\^$6/ to 10$\^$7/ cfu/mL), compared to L. rhamnosus GG as control. Also, adhered strains of L. acidophilus were significantly preserved in serial wash-out steps. However, no correlation could be observed between cell surface hydrophobicity and adhesion abilities of the tested strains of L. acidophilus. Inhibition of adhesion of EHEC O157:H7 was also examined, a 2 log cycle reduction was observed by all of the tested strains of L. acidophilus. These results suggest that the strains of L. acidophilus with high adhesion ability are resistant to wash-out and adhesion ability inhibition by selected strains of L. acidophilus helps to prevent adhesion of EHEC O157:H7 to intestinal epithelial cells.

Inhibition of Leukocyte Adhesion by Developmental Endothelial Locus-1 (Del-1)

  • Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.153-157
    • /
    • 2009
  • The leukocyte adhesion to endothelium is pivotal in leukocyte recruitment which takes place during inflammatory, autoimmune and infectious conditions. The interaction between leukocytes and endothelium requires an array of adhesion molecules expressed on leukocytes and endothelial cells, thereby promoting leukocyte recruitment into sites of inflammation and tissue injury. Intervention with the adhesion molecules provides a platform for development of anti-inflammatory therapeutics. This review will focus on developmental endothelial locus-1 (Del-1), an endogenous inhibitor of leukocyte adhesion.

Studies on Adherance Inhibition and Detachment of Helicobacter pylori Using Egg Yolk IgY and Additives (난황항체 및 첨가제를 이용한 헬리코박터 파이로리의 부착 억제)

  • 구재경;최태부
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • H. pylori is known to be a key pathogen of chronic gastric and duodenal ulcers. Bacterial adhesion to hosts is an essential step for bacterial infection and the inhibition of this adhesion provides a possible method for the treatment of the infection. The inhibitory effect of antibody lgY, produced from immunized hens with H. pylori antigen, was studied in vitro. The inhibition of H. pylori adhesion to AGS was as high as 90% using 0.5mg/ml of lgY, and almost 80% of the detachmentwas also achieved. The inhibitory effect of adhesion-inhibition candidates was investigated. Additives in combination with lgY increased the adhesion-inhibiting effect by about 30-50%. However, the adhesion molecules of H. pylori were varied and complex, therefore the further studies are necessary to develop an adhesion inhibitor and effective enough to be employed for the treatment of H.pylori, in vivo.

  • PDF

Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

  • Zha, Dongqing;Chen, Cheng;Liang, Wei;Chen, Xinghua;Ma, Tean;Yang, Hongxia;van Goor, Harry;Ding, Guohua
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.230-235
    • /
    • 2013
  • Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-${\alpha}$-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism.

Inhibitory Effects of Licochalcone A and Isoliquiritigenin on Monocyte Adhesion to TNF-$\alpha$-activated Endothelium

  • Kwon Hyang-Mi;Lim Soon Sung;Choi Yean-Jung;Jeong Yu-Jin;Kang Sang-Wook;Bae Ji-Young;Kang Young-Hee
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • Numerous natural herbal compounds have been reported to inhibit adhesion and migration of leukocytes to the site of inflammation Licorice extracts, which have been widely used in traditional Chinese medicinal preparation, possess various pharmacological effects. Isoliquiritigenin, a biogenetic precursor of flavonoids with various pharmacological effects, is a natural pigment present in licorice. We attempted to explore whether licorice extracts and isoliquiritigenin mitigate monocyte adhesion to tumor necrosis factor-$\alpha$ (TNF-$\alpha$)-activated human umbilical vein endothelial cells (HUVEC). In addition, it was tested whether the inhibition of monocyte adhesion to the activated HUVEC accompanied a reduction in vascular cell adhesion molecule-l expression(VCAM-l). Dry-roasted licorice extracts in methylene chloride but not in ethanol markedly interfered with THP-l monocyte adhesion to INF-$\alpha$-activated endothelial cells. licochalcone A compound isolated from licorice extract in methylene chloride appeared to modestly inhibit the interaction of THP-l monocytes and activated endothelium. In addition, isoliquiritigenin abolished the monocyte adhesion with attenuating VCAM-l protein expression on HUVEC induced by INF-$\alpha$. These results demonstrated that non-polar components from dry-roasted licorice extracts containing licochalcone A as well as isoliquiritigenin were active in blocking monocyte adhesion to cytokine-activated endothelimn, which appeared to be mediated most likely through the inhibition of VCAM-l expression on HUVEC. Therefore, licorice may hamper initial inflammatory events on the vascular endothelium involving induction of endothelial cell adhesion molecules.

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.