DOI QR코드

DOI QR Code

Inhibition of Leukocyte Adhesion by Developmental Endothelial Locus-1 (Del-1)

  • Choi, Eun-Young (Experimental Immunology Branch, National Cancer Institute, National Institutes of Health)
  • Received : 2009.10.05
  • Accepted : 2009.10.07
  • Published : 2009.10.31

Abstract

The leukocyte adhesion to endothelium is pivotal in leukocyte recruitment which takes place during inflammatory, autoimmune and infectious conditions. The interaction between leukocytes and endothelium requires an array of adhesion molecules expressed on leukocytes and endothelial cells, thereby promoting leukocyte recruitment into sites of inflammation and tissue injury. Intervention with the adhesion molecules provides a platform for development of anti-inflammatory therapeutics. This review will focus on developmental endothelial locus-1 (Del-1), an endogenous inhibitor of leukocyte adhesion.

Keywords

References

  1. von Andrian UH, Mackay CR: T-cell function and migration. Two sides of the same coin. N Engl J Med 343;1020-1034, 2000 https://doi.org/10.1056/NEJM200010053431407
  2. Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6;1182-1190, 2005 https://doi.org/10.1038/ni1275
  3. Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7;678-689, 2007 https://doi.org/10.1038/nri2156
  4. Zarbock A, Ley K: New insights into leukocyte recruitment by intravital microscopy. Curr Top Microbiol Immunol 334; 129-152, 2009
  5. McEver RP, Cummings RD: Perspectives series; cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100;485-491, 1997 https://doi.org/10.1172/JCI119556
  6. Alon R, Feizi T, Yuen CT, Fuhlbrigge RC, Springer TA: Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J Immunol 154;5356-5366, 1995
  7. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC: Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80;413-422, 1995 https://doi.org/10.1016/0092-8674(95)90491-3
  8. Sigal A, Bleijs DA, Grabovsky V, van Vliet SJ, Dwir O, Figdor CG, van Kooyk Y, Alon R: The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J Immunol 165;442-452, 2000 https://doi.org/10.4049/jimmunol.165.1.442
  9. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C: Direct observation of catch bonds involving cell-adhesion molecules. Nature 423;190-193, 2003 https://doi.org/10.1038/nature01605
  10. Adams DH, Lloyd AR: Chemokines: leucocyte recruitment and activation cytokines. Lancet 349;490-495, 1997 https://doi.org/10.1016/S0140-6736(96)07524-1
  11. Campbell JJ, Qin S, Bacon KB, Mackay CR, Butcher EC: Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J Cell Biol 134;255-266, 1996 https://doi.org/10.1083/jcb.134.1.255
  12. Johnson Z, Proudfoot AE, Handel TM: Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 16;625-636, 2005 https://doi.org/10.1016/j.cytogfr.2005.04.006
  13. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC: Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279;381-384, 1998 https://doi.org/10.1126/science.279.5349.381
  14. Tanaka Y, Adams DH, Shaw S: Regulation of leukocyte recruitment by proadhesive cytokines immobilized on endothelial proteoglycan. Curr Top Microbiol Immunol 184;99-106, 1993
  15. Dunne JL, Ballantyne CM, Beaudet AL, Ley K: Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99;336-341, 2002 https://doi.org/10.1182/blood.V99.1.336
  16. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P: Intraluminal crawling of neutrophils to emigration sites; a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203;2569-2575, 2006 https://doi.org/10.1084/jem.20060925
  17. Schenkel AR, Mamdouh Z, Muller WA: Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 5;393-400, 2004 https://doi.org/10.1038/ni1051
  18. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F: Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157;1233-1245, 2002 https://doi.org/10.1083/jcb.200112126
  19. Carman CV, Springer TA: A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167;377-388, 2004 https://doi.org/10.1083/jcb.200404129
  20. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC: Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol 120;1371-1380, 1993 https://doi.org/10.1083/jcb.120.6.1371
  21. Millan J, Ridley AJ: Rho GTPases and leucocyte-induced endothelial remodelling. Biochem J 385;329-337, 2005 https://doi.org/10.1042/BJ20041584
  22. Wee H, Oh HM, Jo JH, Jun CD: ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation; implication for enhanced leukocyte diapedesis. Exp Mol Med 41;341-348, 2009 https://doi.org/10.3858/emm.2009.41.5.038
  23. Wittchen ES: Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14;2522-2545, 2009
  24. Lou O, Alcaide P, Luscinskas FW, Muller WA: CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol 178;1136-1143, 2007 https://doi.org/10.4049/jimmunol.178.2.1136
  25. Bixel MG, Petri B, Khandoga AG, Khandoga A, Wolburg-Buchholz K, Wolburg H, Marz S, Krombach F, Vestweber D: A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo. Blood 109;5327-5336, 2007 https://doi.org/10.1182/blood-2006-08-043109
  26. Wakelin MW, Sanz MJ, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S: An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184;229-239, 1996 https://doi.org/10.1084/jem.184.1.229
  27. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA: CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3;143-150, 2002
  28. Woodfin A, Voisin MB, Imhof BA, Dejana E, Engelhardt B, Nourshargh S: Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 113;6246-6257, 2009 https://doi.org/10.1182/blood-2008-11-188375
  29. Garrido-Urbani S, Bradfield PF, Lee BP, Imhof BA: Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans 36;203-211, 2008 https://doi.org/10.1042/BST0360203
  30. Pfeiffer F, Kumar V, Butz S, Vestweber D, Imhof BA, Stein JV, Engelhardt B: Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol 38;2142-2155, 2008 https://doi.org/10.1002/eji.200838140
  31. Wegmann F, Petri B, Khandoga AG, Moser C, Khandoga A, Volkery S, Li H, Nasdala I, Brandau O, Fassler R, Butz S, Krombach F, Vestweber D: ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J Exp Med 203;1671-1677, 2006 https://doi.org/10.1084/jem.20060565
  32. Butcher EC, Picker LJ: Lymphocyte homing and homeostasis. Science 272;60-66, 1996 https://doi.org/10.1126/science.272.5258.60
  33. Lalor PF, Adams DH: The liver: a model of organ-specific lymphocyte recruitment. Expert Rev Mol Med 4;1-16, 2002
  34. Robert C, Kupper TS: Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 341;1817-1828, 1999 https://doi.org/10.1056/NEJM199912093412407
  35. Shetty S, Lalor PF, Adams DH: Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 254;136-146, 2008 https://doi.org/10.1016/j.tox.2008.08.003
  36. Lee WY, Kubes P: Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J Hepatol 48;504-512, 2008 https://doi.org/10.1016/j.jhep.2007.12.005
  37. Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet AL, Kubes P: A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 99;2782-2790, 1997 https://doi.org/10.1172/JCI119468
  38. Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, Kundu RK, Orlandi A, Zheng YY, Prieto DA, Ballantyne CM, Constant SL, Aird WC, Papayannopoulou T, Gahmberg CG, Udey MC, Vajkoczy P, Quertermous T, Dimmeler S, Weber C, Chavakis T: Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322;1101-1104, 2008 https://doi.org/10.1126/science.1165218
  39. Hidai C, Kawana M, Kitano H, Kokubun S: Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix. Cell Tissue Res 330;83-95, 2007 https://doi.org/10.1007/s00441-007-0456-9
  40. Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D, Auerbach R, Hogan BL, Snodgrass R, Quertermous T: Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12;21-33, 1998 https://doi.org/10.1101/gad.12.1.21

Cited by

  1. Patent Highlights vol.2, pp.4, 2009, https://doi.org/10.4155/ppa.13.34
  2. Reciprocal relation between GADD153 and Del-1 in regulation of salivary gland inflammation in Sjogren syndrome vol.95, pp.3, 2009, https://doi.org/10.1016/j.yexmp.2013.09.002
  3. Using Del-1 to Tip the Angiogenic Balance in Endothelial Cells in Modular Constructs vol.20, pp.7, 2009, https://doi.org/10.1089/ten.tea.2013.0241
  4. Del-1 Overexpression in Endothelial Cells Increases Vascular Density in Tissue-Engineered Implants Containing Endothelial Cells and Adipose-Derived Mesenchymal Stromal Cells vol.20, pp.7, 2009, https://doi.org/10.1089/ten.tea.2013.0242
  5. Mesenchymal stem cell-based developmental endothelial locus-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice vol.9, pp.5, 2009, https://doi.org/10.3892/mmr.2014.1988
  6. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism vol.29, pp.9, 2009, https://doi.org/10.1096/fj.15-273664
  7. The status of glucocorticoid-induced leucine zipper protein in the salivary glands in Sjögren’s syndrome: predictive and prognostic potentials vol.7, pp.1, 2009, https://doi.org/10.1186/s13167-016-0052-8
  8. Effects of Erythromycin on Osteoclasts and Bone Resorption via DEL-1 Induction in Mice vol.10, pp.3, 2009, https://doi.org/10.3390/antibiotics10030312
  9. EGF repeats of epidermal growth factor‑like domain 7 promote endothelial cell activation and tumor escape from the immune system vol.47, pp.1, 2021, https://doi.org/10.3892/or.2021.8219
  10. Exosomal Del-1 as a Potent Diagnostic Marker for Breast Cancer: Prospective Cohort Study vol.21, pp.6, 2021, https://doi.org/10.1016/j.clbc.2021.02.002