• Title/Summary/Keyword: ingot

Search Result 378, Processing Time 0.028 seconds

Development of Manufacturing Process of Pure Titanium Wire to make Eyewear Frame (안경용 순티타늄 wire 제조 공정개발)

  • Choi, Gye-Hun;Kim, Sang-Yeoun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1105-1110
    • /
    • 2011
  • After pure titanium Ingot(G2) with 400mm in diameter was manufactured, the analysis of its ingredients showed that the oxygen content was 0.073wt% and the iron content was 0.03wt%, which made ASTM Gr.2 standardization satisfactory. The processed titanium ingot produced 42mm wire rod, and hot rolling of 18th phase produced 9mm wire rod. The hardness analysis of 15.8mm wire rod, which was processed in hot rolling of 10th phase from the surface to the center, resulted in almost constant value with Hv150~200. The last 9mm wire rod had a different yield strength and elongation percentage depending on the temperature as it was led in to a hot roller. However, tensile strength revealed an approximate value and made ASTM B863 standardization satisfactory.

Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing (n형 $Bi_2(Te,Se)_3$ 가압소결체의 열전특성)

  • Park, D.H.;Roh, M.R.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • The n-type $Bi_2(Te,Se)_3$ powders were fabricated by melting/grinding method and were hot-pressed in order to compare thermoelectric properties of the hot-pressed specimens with those of the $Bi_2(Te,Se)_3$ ingot. Effects of mechanical milling treatment of the $Bi_2(Te,Se)_3$ powders on thermoelectric characteristics of a hot-pressed specimen were also examined. The hot-pressed $Bi_2(Te,Se)_3$ exhibited power factors of $27.3{\sim}32.3{\times}10^{-4}W/m-K^2$ which were superior to $24.2{\times}10^{-4}W/m-K^2$ of the ingot. The $Bi_2(Te,Se)_3$, hot-pressed after mechanical milling treatment of the powders, possessed a non-dimensional figure-of-merit of 1.02 at $100^{\circ}C$ and exhibited extrinsic-intrinsic transition at $130^{\circ}C$.

Effect of Annealing Conditions on Properties of BSCCO-2212 Bulk (열처리조건이 BSCCO-2212 벌크의 특성에 미치는 영향)

  • Kim, Kyu-Tae;Kim, Chan-Joong;Lim, Jun-Hyung;Park, Eui-Cheol;Park, Jin-Hyun;Joo, Jin-Ho;Hyun, Ok-Bae;Kim, Hye-Rim
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.193-198
    • /
    • 2008
  • We fabricated BSCCO-2212(2212) bulk superconductors by using a casting process and evaluated the superconducting properties. The effects of annealing conditions on microstructure and critical properties were studied. It was found that the homogeneous and uniform microstructure improved the critical properties and the microstructures of ingot and annealed rods were different with the size of 2212 rod and tube. The critical current($I_c$) of rods increased with increasing annealing time, probably due to increased grain size of 2212. Annealing time of the highest $I_c$ for the smaller rod(diameter of 10 mm) was shorter(150 hr) than that of the larger rod(diameter of 16 mm, 400 hr). This size effect seems to be related to different grain sizes of the intermediate phases such as 2201 and secondary phases in the ingot. In addition, we fabricated 2212 tubes from the rod by removing the center region which contained inhomogeneous microstructures. The $I_c$ of 2212 tube with the outer diameter of 16 mm and the thickness of 2 mm was measured to 844 A, which corresponds to the critical current density of $1017\;A/cm^2$ at 77 K.

  • PDF

A study on Cavity Closure Behavior During Hot Open Die Forging Process (열간 자유단조 공정시 내부 공극 압착 거동에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.293-298
    • /
    • 2007
  • Recently, there is a need to produce a large forged part for the flight, shipping, some energies, and military industries, etc. Therefore, an open die forging technique of cast ingots is required to obtain higher quality of large size forged parts. Cogging process is one of the primary stages in many open die forging processes. In the cogging process prior to some open die forging processes, internal cavities have to be eliminated for defect-free. The present work is concerned with the elimination of the internal cavities in large ingots so as to obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis is performed to investigate the overlap defect of cast ingots during cogging stage. The measured flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}-3D$. The calculated results of cavity closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

Discussion on the Mechanical Alloying Process of Ni-20Cr alloy (Ni-20 Cr계 분말의 기계적 합금화 과정에 대한 고찰)

  • Yoo, Myoung Ki;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 1993
  • Blends of elemental Ni and 20 weight % Cr powder were milled for different period in a laboratory attritor. Powder size distribution, microstructure and X-ray diffraction characteristics were investigated as a function of processing period. Saturated magnetization, Ms and coercive force, Hc we also measured and compared with plasma melted ingot to confirm the mechanically alloyed states. Mechanical alloying occurred as a consequence of the partition of powders and the increase of interfacial area driving diffusing of Cr into Ni. However, magnetic properties of chemically homogeneous solid solution like melted ingot has not been observed even though steady state of submicron grain size has been achieved after milling over 15 hrs. Further mechanical alloying period gave refinement of grain size, which resulted in the increase of alloyed layer. It is concluded that homogenization should be controlled by the increase of interfacial area between constitutive powders caused by plastic particle deformation and by the diffusion of Cr within the alloyed phase into Ni-rich phase through lattice defects.

  • PDF

Development of Safeguards System for Advanced Spent Fuel Conditioning Process

  • Lee Tae-Hoon;Song Dae-Yong;Ko Won-Il;Kim Ho-Dong;Jeong Ki-Jeong;Park Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.426-427
    • /
    • 2005
  • Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical process in which the spent fuel of PWR is transformed into the uranic metal ingot. Through this process, which has been developed in KAERI since 1998, the radioactivity, the radiotoxicity, the heat and the volume of the PWR spent fuel are reduced by a quarter of the original. To demonstrate a lab-scale process and extract the data for the later pilot-scale process, a demonstration facility of ACP (ACPF) is under construction and the lab-scale demonstration is slated for 2006. To establish the safeguardability of ACPF, a safeguards system including a neutron counter based on non-destructive assay, which is named as ACP Safeguards Neutron Counter (ASNC), the ACP Safeguards Surveillance System (ASSS) which consists of two neutron monitors and five IAEA cameras, and Laser Induced Breakdown System (LIBS) have been developed and are ready to be installed at ACPF. The target materials of ACP to assay with ASNC are categorized into three types among which the first is the uranic metal ingot, the second is the salt waste and the last is $UO_2$ and $U_{3}O_8$ powders, rod cuts and hulls. The Pu content of process nuclear materials can be accounted with ASNC. The ASSS is integrated in the ACP Intelligent Surveillance Software (AISS) in which the IAEA camera images and background signals at the rear doors of ACPF are displayed. The composition of special nuclear materials of ACP can be measured with LIBS which can be a supporting measurement tool for ASNC. The conceptual picture of safeguards system of ACPF is shown in Fig. 1.

  • PDF

DHC Characteristics of M11 Pressure Tube in Wolsong Unit 1

  • Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Delayed hydride cracking (DHC) velocity and threshold stress intensity factor for DHC ($K_{IH}$) tests in the radial direction on M11 pressure tube material in Wolsong unit 1 were carried out following the Atomic Energy Canada Limited (AECL) standard test procedure in order to identify the effect of undercooling on DHCV and to acquire the $K_{IH}$ data. The results showed that $K_{IH}$ 's were 8.8$\pm$0.8 MPa√m in the back offcut and 11.4$\pm$0.7 MPa√m in the front offcut. The fact that $K_{IH}$ in the front offcut is about 20% higher than that in the back offcut is attributed to the microstructural difference between the materials of the front and back ends. $K_{IH}$ 's in M11 pressure tube appeared to be higher than the values from the tubes made of double melted ingot reported earlier. This can be interpreted by the fact that very small amounts of Chlorine (Cl) and Phosphorus (P) are contained in the ingot and that the content of the harmful elements in the M11 pressure tube is equivalent to that made of a quadruple melting process. DHC velocities at 25$0^{\circ}C$ in the front offcut in the radial direction are measured to be 5~8$\times$10$^{-8}$ m/s. The results show that the prior thermal history change the DHC velocity significantly. This effect was confirmed by the experiment of undercooling prior to the DHC tests.DHC tests.

  • PDF

Distribution Characteristics of Radionuclies (60Co, 137Cs) During the Melting of Radioactive Metal Waste (방사성 금속폐기물의 용융시 방사성 핵종(60Co, 137Cs)의 분배특성)

  • Min, Byung Youn;Choi, Wang Kyu;Oh, Won Zin;Jung, Chong Hun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.627-632
    • /
    • 2007
  • A fundamental study on the melt decontamination of metal wastes generated by dismantling the nuclear facility, the melting of metal wastes such as stainless steel and carbon steel have been carried out to investigate the distribution phenomena of the radioisotopes such as $^{60}Co$ and $^{137}Cs$ into the ingot, slag and dust phases by using the various slag types, slag concentration and basicity in an arc furnace. The $^{60}Co$ remained homogeneously in the ingot phase above 90 % and it was barely present in the slag below 10 %. The effect of the slag composition on the distribution for Co-60 was not considerable, but a basic slag former with high fluidity showed effective. $^{137}Cs$ was completely eliminated from the melt of the stainless steel as well as the carbon steel and distributed to the slag and the dust phase.

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.

Development of Cleaning Agents for Solar Silicon Wafer (태양광 실리콘 웨이퍼 세정제 개발)

  • Bae, Soo-Jeong;Lee, Ho-Yeoul;Lee, Jong-Gi;Bae, Jae-Heum;Lee, Dong-Gi
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Cleaning procedure of solar silicon wafer, following ingot sawing process in solar cell production is studied. Types of solar silicon wafer can be divided into monocrystalline or multicrystalline, and slurry sawn wafer or diamond sawn wafer according to the ingot growing methods and the sawing methods, respectively. Wafer surface and contaminants can vary with these methods. The characterisitics of contaminants and wafer surface are investigated for each cleaning substrate, and appropriate cleaning agents are developed. Physical properties and cleaning ability of the cleaning agents are evaluated in order to verify the application in the industry. The wafers cleaned with the cleaning agents do not show any residual contaminants when analyzed by XPS and regular patterns are formed after texturization. Furthermore, the cleaning agents are applied in the production industry, which shows superior cleaning results compared to the existing cleaning agents.