• Title/Summary/Keyword: infrastructure scenario

Search Result 158, Processing Time 0.029 seconds

A Study of Effectiveness of the Improved Security Operation Model Based on Vulnerability Database (취약점 데이터베이스 기반 개선된 보안관제 모델의 효과성 연구)

  • Hyun, Suk-woo;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1167-1177
    • /
    • 2019
  • In this paper, the improved security operation model based on the vulnerability database is studied. The proposed model consists of information protection equipment, vulnerability database, and a dashboard that visualizes and provides the results of interworking with detected logs. The evaluation of the model is analyzed by setting up a simulated attack scenario in a virtual infrastructure. In contrast to the traditional method, it is possible to respond quickly to threats of attacks specific to the security vulnerabilities that the asset has, and to find redundancy between detection rules with a secure agent, thereby creating an optimal detection rule.

Factors Affecting Students' Decision to Choose Regional Public Universities: An Empirical Study from Vietnam

  • LE, Thi Thanh Thuy;TRAN, Minh Tuan;LE, Hoang Ba Huyen
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.143-152
    • /
    • 2022
  • The purpose of this paper is to investigate the impact of several factors on students' decisions to attend a public institution in Vietnam's North Central area. The enrollment issue toward regional institutions is particularly critical in the Vietnam Ministry of Education and Training reforming the university enrollment process and the complicated scenario of the Covid-19 pandemic. A total of 500 students were surveyed for research samples. Data is synthesized, validated, cleaned, and analyzed using SPSS and AMOS software using methods including reliability, EFA, CFA, and SEM. The findings suggest that the proposed independent components (individual factors, study fees, advertisement, infrastructure and facilities, local features, and lastly, training activities) have a beneficial impact on students' decision to attend a public university in the North Central region. The study also found that the graduation exam outcome had a moderating effect on the relationship between registration and students' decisions. These imply targeted solutions for regional public universities to diversify training majors, improve training quality, capitalize on local advantages, increase interaction, and promote training programs and image to be more effective in attracting students and maintaining competition in the current enrollment environment.

Impact of International Shipping's Environmental Regulations on the Evaluation of Ports (국제해운의 환경규제가 항만 평가에 미치는 영향)

  • Sung-Kuk Kim;Jin-Uk Lee
    • Korea Trade Review
    • /
    • v.45 no.6
    • /
    • pp.99-112
    • /
    • 2020
  • It is no exaggeration to say that today's world economy is dependent on international trade, which is the result of inter-state transactions. As the vast majority of international goods transport is transported by international shipping, interest in the seaborne transport field is natural in international and trade studies. In particular, in the case of international shipping, as it is the basis of typical international transportation, changes in international shipping due to the innovation of technology may have an effect on international trade norms. In this study, as a result of evaluating port preference in a hypothetical scenario by using the Design of Experiments method, bunkering as well as port service, which is traditionally important, was identified as a major competitive factor of future ports. It has been revealed that, above all, the port to respond to the future is the continued importance of port services and the supply of ship fuel. Therefore, port authorities are providing implications that LNG bunkering infrastructure suitable for international environmental regulations is important.

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels (밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구)

  • Boohyoung Bang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

Analysis of the Effects on Soil Erosion and Suspended Sediment Reduction by Alpine Unauthorized and Illegal Agricultural Fields Restoration Scenarios (고랭지 임의·불법 경작지 복구 시나리오에 따른 토양유실 및 부유사량 저감 효과 분석)

  • Lee, Seoro;Lee, Gwanjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • This study assessed the efficiency of reducing soil erosion and suspended sediment through the restoration of alpine unauthorized and illegally cultivated fields, using the SWAT (Soil and Water Assessment Tool) model in the Mandae District. The results showed that in Scenario 5, which involved restoring unauthorized and illegal fields within forests, along rivers (banks), and in ditch areas were restored to their original land categories, achieved the highest efficiency in reducing average annual soil erosion and suspended sediment, with reductions of 8.1% and 4.5%, respectively. In particular, it was confirmed that the restoration of unauthorized and illegal fields within forested areas has a significant impact. This demonstrated that the restoration of unauthorized and illegal agricultural fields can substantially reduce the soil erosion and suspended sediment attributable to non-point source pollution. Our findings highlight the importance of managing these unauthorized and illegal agricultural activities in developing sustainable strategies within non-point source pollution management areas. This study is expected to provide important basic data to effectively establish water quality improvement strategies in the region of non-point source pollution management.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

An Analysis on the Expert Opinions of Future City Scenarios (미래도시 전망 분석)

  • Jo, Sung Su;Baek, Hyo Jin;Han, Hoon;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.3
    • /
    • pp.59-76
    • /
    • 2019
  • This study aims to develop urban scenarios for future cities and validate the future city scenarios using a Delphi method. The scenarios of future city was derived from urban structure, land use, transportation, and urban infrastructure and development using big data analysis, environmental scanning techniques, and literature review. The Delphi survey interviewed 24 erudite scholars and experts across 6 nations including Korea, USA, UK, Japan, China, Australia and India. The Delphi survey structure was designed to test future city scenarios, verified by the 5-point Likert scale. The survey also asked the timing of each scenario likely happens by the three terms of near-future, mid-future and far-future. Results of the Delphi survey reveal the following points. Firstly, for the future urban structure it is anticipated that urban concentration continues and higher density living in global mega cities near future. In the mid-future small and medium size cities may decrease. Secondly, the land use pattern in the near-future is expected of increasing space sharing and mixed or layered vertical land-use. In addition underground space is likely to be extended in the mid-future. Thirdly, in the near-future, transport and infrastructure was expected to show ICT embedded integration platform and public and private smart transport. Finally, the result of Delphi survey shows that TOD (Transit Oriented Development) becomes a development norm and more emphasis on energy and environment fields.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.