• 제목/요약/키워드: infrared thermal measurement

검색결과 140건 처리시간 0.145초

열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석- (Plant Growth Monitoring Using Thermography -Analysis of nutrient stress-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

COMPARISON OF LOS DOPPLER VELOCITIES AND NON-THERMAL LINE WIDTHS IN THE OFF-LIMB SOLAR CORONA MEASURED SIMULTANEOUSLY BY COMP AND HINODE/EIS

  • Lee, Jae-Ok;Lee, Kyoung-Sun;Seough, Jungjoon;Cho, Kyung-Suk
    • 천문학회지
    • /
    • 제54권2호
    • /
    • pp.49-60
    • /
    • 2021
  • Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the off-limb solar corona are often used for investigating the Alfvén wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two different instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various off-limb coronal regions: flaring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012-2014. CoMP provides the polarization at the Fe xiii 10747 Å coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 Å in 2-D off limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 Å) in a limited field of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the differences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: ±3 km s-1 for LOS Doppler velocity and ±9 km s-1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we find that they are consistent with each other overall in the active regions and equatorial quiet region (0.25 ≤ CC ≤ 0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02 ≤ CC ≤ 0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions (≥ 87% of pixels) except for the polar region (45% of pixels). We find that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06 ≤ CC ≤ 0.61), while they seem to be different in the others (-0.1 ≤ CC ≤ 0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions (≤ 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.

Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites

  • Sakhare, Karishma M.;Borkar, Shashikant P.
    • Advances in materials Research
    • /
    • 제11권3호
    • /
    • pp.191-209
    • /
    • 2022
  • Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.

광 적외선열화상을 이용한 풍력 블레이드의 결함 크기 정량화 연구 (Quantitative Defects Detection in Wind Turbine Blade Using Optical Infrared Thermography)

  • 권구안;최만용;박희상;박정학;허용학;최원재
    • 비파괴검사학회지
    • /
    • 제35권1호
    • /
    • pp.25-30
    • /
    • 2015
  • 풍력발전기의 핵심 부품인 풍력 블레이드는 예상치 못한 풍 하중과 공력 특성으로 인해 불안전한 상태에 놓여 있다. 그에 따라 필연적으로 발생하는 내부 결함을 검출하기 위해 초음파탐상을 이용한 비파괴검사가 주로 진행되어 왔다. 하지만 블레이드의 소재 특성으로 인해 음향 신호 분석에 따른 문제점이 발생한다. 따라서 본 연구에서는 풍력 블레이드 인공결함시험편을 제작후, 능동적 광 적외선열화상 비파괴검사 방법을 이용하여 결함의 크기를 정량화하기 위한 실험을 진행하였다. 100 kW 급 블레이드 내부의 결함 크기 정량화를 위해 알루미늄 켈리브레이션 테이프를 사용하였으며, 게재물(inclusion), 디본딩(debonding), 주름(wrinkle) 결함을 삽입하였다. 실험 결과 모두에서 뚜렷한 결함 검출이 가능하였으며, 결함 크기 정량화 결과 debonding 인공 결함 (${\phi}50.0mm$)에서 최대 98.0%의 정확성을 보였다.

척택.어제 침자가 고해상도 적외선 카메라로 관찰한 촌구맥 부위의 온도 Pulsation 변화에 미치는 영향 연구 (Effect of Acupuncture at the LU5(Reinforcement), LU10(Reduction) on the Pulsation Scale of Chon, Gwan and Chuk region using High Resolution Infrared Camera)

  • 나창수;정효상;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.127-133
    • /
    • 2011
  • Arteria radialis is a branch of the brachial artery extending down the forearm around the wrist where it closes to skin surface. In the oriental medicine, the skin above arteria radialis has an important role because oriental medicine practitioners put their finger tips on the area, and diagnose patient's health conditions by feeling the pulsation of the arterial contraction. The finger tip diagnostic method relies on subjective decision of the practitioner; and there is a need to develop an objective diagnostic modality. The pulsation of the arterial contraction appears not only a movement on the site but also as temperature fluctuation due to pulsatile feeding of warmer blood. The goal of this study is to demonstrate a feasibility of using an infrared camera quantitatively to detect the temperature fluctuation on the skin. Clinical important three different areas, called chon, gwan, chuk, near a wrist where the arteria radialis reaches close to skin surface are marked with small pieces of surgical tape. A high-speed and high-resolution infrared camera with a 3 cm of field of view measures these areas for 10 second at 200 frames per second with a 320*240 pixel size. The pulsatile temperature fluctuation is calculated after passing a band pass filter to remove any stationary temperature over 10 second. The temperature fluctuation of a healthy male volunteer is measured at a room temperature as a control, and is compared with another measurement performed after 20 minutes staying in a room at a 40 degree Celsius. This comparison is repeated for three times, and indicates that the fluctuation increases after staying 20 minutes in the warm room. This increase becomes smaller when the person stays in the warm room with an acupuncture treatment that decreases body temperature. So that an objective diagnostics on the site may become feasible.

기상 조건과 작물 생육상태에 따른 무인기 기반 지표면온도의 관측 정확도 평가 (Evaluation of Measurement Accuracy for Unmanned Aerial Vehicle-based Land Surface Temperature Depending on Climate and Crop Conditions)

  • 류재현
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.211-220
    • /
    • 2021
  • 작물의 생육 상태와 스트레스를 탐지하기 위한 유용한 변수 중 하나인 지표면온도(LST)는 열화상 카메라의 소형화와 무인기(UAV)의 발달로 인해 식생 군락 및 지역적 규모에서 취득할 수 있게 되었다. 무인기에 장착된 열화상 카메라로 관측한 LST(LSTUAV)는 습도, 풍속과 같은 기상인자, 관측기기, 그리고 지표 상태에 따라 영향을 받으나 다양한 기상 조건과 작물의 생육 단계에서 측정된 LSTUAV의 정확도 평가는 부족한 실정이다. 본 연구의 목적은 지상에 고정된 열적외선 센서에서 관측된 LST(LSTGround)를 이용하여 다양한 기상 조건과 작물의 생육 상황에서 LSTUAV의 정확도를 평가하는 것이다. 마늘 작물을 대상으로 LSTUAV 관측을 수행하였으며, 상대습도, 절대습도, 돌풍, 그리고 식생지수에 따른 LSTUAV 정확도를 평가하였다. 센서 간의 편향을 최소화한 경우 상대습도가 60%를 초과하는 조건에서 관측된 LSTUAV의 평균제곱근오차는 2.565℃로 상대습도 60% 이하에서 관측된 LSTUAV의 평균제곱근오차(1.82℃) 보다 정확도가 낮았으며, 절대습도에 대한 결과도 상대습도와 유사했다. 이는 대기 중의 습도가 LSTUAV의 정확도에 영향을 미친다는 것을 의미한다. 따라서 LSTUAV를 관측은 상대습도가 60% 이하의 조건에서 수행되는 것을 권고한다. 반면, 돌풍이나 식생 피복률의 영향은 통계적으로 유의하지 않았다. 이것은 무인기 비행이 안정적으로 가능한 조건에서 LSTUAV는 식생의 상태를 반영한 신뢰성 있는 값을 도출한다는 것을 의미한다. 본 연구의 결과는 농업 분야에서 LSTUAV의 정확도를 이해하고 활용하는데 도움이 될 것이다.

Near-Infrared Imaging Spectrometer onboard NEXTSat-1

  • 정웅섭;이대희;문봉곤;박귀종;박성준;표정현;박영식;김일중;박원기;김민규;이덕행;남욱원;한원용;임명신;이형목;이정은;신구환;채장수
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.70.1-70.1
    • /
    • 2013
  • New space program for "Next-Generation Small Satellite (NEXTSat)" launched last year after the success of the series of Science & Technology Satellite (STSAT). KASI proposed the near-infrared imaging spectrometer as a scientific payload onboard NEXTSat-1. It was selected as one of two scientific payloads. The approved scientific payload is the near-infrared imaging spectrometer for the study of star formation history (NISS). The efficient near-infrared observation can be performed in space by evading the atmospheric emission as well as other thermal noise. The observation of cosmic near-infrared background enables us to reveal the early Universe in an indirect way through the measurement of absolute brightness and spatial fluctuation. The detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions give us less biased information on the star formation. In addition, the NISS will be expected to demonstrate our technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

적외선 체열 영상의 표준화 연구 부위별 대표 혈위를 중심으로 (Standardization Study of Thermal Imaging using the Acupoints in Human Body)

  • 최영곤;임청산;권기록
    • 대한약침학회지
    • /
    • 제11권3호
    • /
    • pp.113-122
    • /
    • 2008
  • Objective: The purpose of this study was to invigorate the use of infrared thermal imaging apparatus as a diagnostic tool in Oriental medicine by providing standard temperature on specific acupoints. Methods: Subjects for the study was recruited through an advertisement in the school homepage(www.sangji.ac.kr) explaining the objectives and methods. 100 volunteers agreeing to terms were selected and measured the full body thermal image. Common acupoints used in the clinical surrounding were chosen and final 63 acupoints were selected for the measurement. Male/female and right/left readings were obtained for the analysis. Results: Following results were obtained from analyzing the body temperature of 50 male subjects and 50 female subjects 1. Subjects participating in the study ranged from 19 years of age to 44 years. Median male age at $26.86{\pm}6.02$ and female age at $22.88{\pm}2.74$, respectively. 2. For all acupoints, no significant differences were witnessed between the gender and right, left side of the body. 3. 10 acupoints from the facial region(18 bilateral), 8 acupoints from the chest/abdomen region(10 bilateral), 6 acupoints from the back region(11 bilateral), 17 acupoints from the upper extremity(34 bilateral), and 22 acupoints from the lower extremity(44 bilateral) were chosen. 4. In the facial region, BL2 showed the highest temperature and GV26 showed the lowest. 5. In the chest/abdomen region, CV22 showed the highest temperature and CV6 showed the lowest. 6. In the back region, GV14 showed the highest temperature and BL23 showed the lowest. 7. In the upper extremity region, jianqian(extra point) showed the highest temperature and baxie(extra point) showed the lowest. 8. In the lower extremity region, KI1 and bafeng(extra point) shoed the highest temperature and BL40 showed the lowest. Conclusions: Based on the standard body temperature measured on specific acupoints throughout the body, we hope these findings can trigger further studies on applications of infrared thermal imaging and clinical usage in the field of oriental medicine.

고속열차 산천 전장품 발열특성 측정 (Measurement of Thermal Characteristics of Electric Unit for Sancheon High-Speed Railcar)

  • 박원희;윤수환;박춘수
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.3672-3679
    • /
    • 2015
  • 열차 운행에 따른 전장품들의 발열을 예측하기 위해 동력차 내 벽면온도 및 외부 유출 온도 및 풍속, 외부로부터 유입되는 유입 공기의 유입 온도 및 속도를 측정하였다. 이를 위하여 적외선카메라를 이용하여 고속열차 내부의 전장품 및 벽 표면의 온도를 측정하였다. 또한 전장품에서 발생하는 열은 고속열차 천장에 설치된 덕트를 통하여 외부로 배출된다. 배출되는 공기의 온도 및 속도를 측정하였고, 외부에서 동력차 내부로 들어오는 유입공기의 온도 및 속도도 측정하였다. 또한 부착형 온도센서를 이용하여 동력차 내부의 벽 및 전장품 표면에서의 온도를 측정하였다. 측정된 결과를 이용하여 열차 주행에 따른 전장품의 발열 특성을 분석하였다.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF