• Title/Summary/Keyword: infrared spectrum

Search Result 470, Processing Time 0.027 seconds

Clinical Applications of Functional Near-Infrared Spectroscopy in Children and Adolescents with Psychiatric Disorders

  • Lee, Yeon Jung;Kim, Minjae;Kim, Ji-Sun;Lee, Yun Sung;Shin, Jeong Eun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • The purpose of this review is to examine the clinical use of functional near-infrared spectroscopy (fNIRS) in children and adolescents with psychiatric disorders. Many studies have been conducted using objective evaluation tools for psychiatric evaluation, such as predicting psychiatric symptoms and treatment responses. Compared to other tools, fNIRS has the advantage of being a noninvasive, inexpensive, and portable method and can be used with patients in the awake state. This study mainly focused on its use in patients with attention-deficit/hyperactivity disorder and autism spectrum disorder. We hope that research involving fNIRS will be actively conducted in various diseases in the future.

A Study on RFID Sensors Location Tracking Systems Using Cooperative Spectrum Sensing (협력 스펙트럼 센싱을 이용한 RFID 센서의 위치인식 시스템에 대한 연구)

  • Roh, Chang-Bae;Na, Won-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.839-844
    • /
    • 2011
  • Various technologies such as infrared light, ultrasonic waves, RFID, GPS, UWB, and signal indicators have been incorporated in the location tracking system. However, such pre-existing systems require location recognition in shadow areas. This study proposes a location tracking system that utilizes Cooperative Spectrum Sensing. Cooperative Spectrum Sensing is not only able to track the location and path of moving objects but also recognize when objects breakaway from the path set by sensors and guide them back. In addition, it has the advantage of being more efficient in terms of frequency usage. It is able to automatically fix power transmission and frequency modulation for transmission cognitive users to an optimum level within the range that does not cause interference for primary users.

Influence of gas mixing ratio on Xe spectrum for improving Luminous Efficiency & High Speed discharge images in AC-PDP

  • 안정철
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.233-233
    • /
    • 1999
  • 본 연구에서는 2성분계 gas(Ne+Xe)를 사용하여 기체압력(p), 진동수(f)에 따라 VUV(Vacuum Ultra Violet) spectrum 147, 173nm 파장과 IR(Infrared) spectrum 823nm, 828nm을 Vacuum Monochromator(Acton-VM 507)를 통해 측정하였다. 휘도(Luminance)와 전력(Power)측면에서 Ne+ Xe 최적의 가스 조성비를 찾기 위해서 Xe의 혼합비에 따른 IR영역인 823nm, 828nm을 측정결과, Xe 4%일 때 좋은 효율을 나타냈다. 기체압력이 200Torr에서는 Xe(3P1)에 기인하는 147nm가 주요한 파장이며, 기체압력이 400Torr, 600Torr일때는 Xe(3P2)에 기인하는 173nm 파장이 주요함을 알 수 있었다. 또한 공간 방전 이미지를 전압 pulse 인가후 ICCD Camera(V-Tek)의 Ready time, On Time을 조절하면서 50ns delay로 관측하였다. 향후 실험계획은 실제 상용화되고 있는 혼합가스 He+Ne+Xe의 조성비에 따른 자세한 실험을 할 것이다.

  • PDF

Research on Far-Infrared Optical Spectra of Blood Substances using FTIR-spectrometer (FTIR Spectrometer를 이용한 혈중성분의 원적외선 분광 스펙트럼에 관한 연구)

  • 김건식;최우석;박승한;전계진;윤길원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.122-123
    • /
    • 2000
  • 혈중 성분, 또는 생체 시료와 빛의 상호작용에 관한 연구는 비침습적 정량분석, 또는 생체 조직의 상태 분석의 가능성을 의미하므로 많은 분야에서 연구가 진행되고 있다. 최근에는 원적외선 검출소자가 급속히 개발됨에 따라 원적외선(8~15$mu extrm{m}$)영역에서의 생체 시료 및 성분들의 정량적인 분석과 영상에 관한 연구가 큰 주목을 받고 있다. 그중 혈중 Glucose 성분의 정량분석에 관한 연구는 여러가지 분광법-특히 NIR 영역에서 흡수, 투과, ATR, NMR 등-으로 활발히 연구되고 있으며$^{1)}$ , 최근에는 FIR 영역에서 혈중 성분들이 특정한 흡수 봉우리를 가지고 있음이 확인되어 이 영역에서의 분광법과 정량 분석에 대한 관심이 고조되고 있다. 본 연구에서는 혈중 성분들의 원적외선 영역에서 빛과의 상호작용인 흡수 spectrum을 측정하여 정량분석에 대한 가능성을 확인하였다. 생체를 이루는 가장 기본인 물에 대한 흡수 spectrum의 연구를 먼저 수행하였고, 혈중 성분중 Glucose, Hb, Albumin 등의 수용액을 농도별로 흡수 spectrum측정을 하였다. (중략)

  • PDF

Saturated Absorption Spectroscopy of 13C2H2 in the Near Infrared Region

  • Moon, H. S.;Lee, W. K.;Suh, H. S.
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Using the external cavity spectroscopy method, we have observed the saturated absorption spectrum of the P(16) line of the v$_1$+v$_3$ band of $^{13}C$_2$H$_2$$. The frequency of a laser has been stabilized to the saturated absorption spectrum. The relative contrast of the saturation spectrum is about 7% with respect to the linear absorption and the linewidth is about 1.8 MHz. The frequency fluctuation of the stabilized LD is about $\pm$ 20 KHz for a sampling time of 100 ms.

Compensation of Surface Temperature Effect in Determination of Sugar Content of Shingo Pears using NIR (근적외선을 이용한 신고 배 당도판정에 있어 표면 온도영향의 보정)

  • 이강진;최규홍;김기영;최동수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.117-124
    • /
    • 2002
  • This research was conducted to develop a method to remove the effect of surface temperature of Shingo pears for sugar content measurement. Sugar content was measured by a near-infrared spectrum analysis technique. Reflected spectrum and sugar content of a pear were used for developing regression models. For the model development, reflected spectrums having wavelengths in the range of 654 to 1,052nm were used. To remove the effect of surface temperature, special sample preparation techniques and partial least square (PLS) regression models were proposed and tested. 71 Shingo pears stored in a cold storage, which had 2$^{\circ}C$ inside temperature, were taken out and left in a room temperature for a while. Temperature and reflected spectrum of each pear was measured. To increase the temperature distribution of samples, temperature and reflected spectrum of each pear was measured four times with one hour twenty minutes interval. During the experiment, temperature of pears increased up to 17 $^{\circ}C$. The total number of measured spectrum was 284. Three groups of spectrum data were formed according to temperature distribution. First group had surface temperature of 14$^{\circ}C$ and total number of 51. Second group consisted of the first and the fourth experiment data which contained the minimum and the maximum temperatures. Third group consisted of 155 data with normal temperature-distribution. The rest data set were used for model evaluation. Results shelved that PLS model I, which was developed by using the first data group, was inadequate for measuring sugar content of pears which had different surface temperatures from 14$^{\circ}C$. After temperature compensation, sugar content predictions became close to the measured values. Since using many data which had wide range of surface temperatures, PLS model II and III were able to predict sugar content of pears without additional temperature compensation. PLS model IV, which included the surface temperatures as an independent variable. showed slightly improved performance(R$^2$=0.73). Performance of the model could be enhanced by using samples with more wide range of temperatures and sugar contents.

Characteristics of Surface Micromachined Pyroelectric Infrared Ray Focal Plane Array

  • Ryu, Sang-Ouk;Cho, Seong-Mok;Choi, Kyu-Jeong;Yoon, Sung-Min;Lee, Nam-Yeal;Yu, Byoung-Gon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • We have developed surface micromachined Infrared ray (IR) focal plane array (FPA), in which single $SiO_{2}$ layer works as an IR absorbing plate and $Pb(Zr_{0.3}Ti_{0.7})O_{2}$ thin film served as a thermally sensitive material. There are some advantages of applying $SiO_{2}$ layer as an IR absorbing layer. First of all, the $SiO_{2}$ has good IR absorbance within $8{\sim}12{\mu}m$ spectrum range. Measured value showed about 60% absorbance of incident IR spectrum in the range. $SiO_{2}$ layer has another important merit when applied to the top of Pt/PZT/Pt stack because it works also as a supporting membrane. Consequently, the IR absorbing layer forms one body with membrane structure, which simplifies the whole MEMS process and gives robustness Ito the structure.

Half mJ Supercontinuum Generation in a Telecommunication Multimode Fiber by a Q-switched Tm, Ho:YVO4 Laser

  • Zhou, Renlai;Ren, Jiancun;Lou, Shuli;Ju, Youlun;Wang, Yuezhu
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Up to ${\sim}520{\mu}J$ broadband mid-infrared (IR) supercontinuum (SC) generation in telecommunication multimode fiber (MMF) directly pumped by a $2.054{\mu}m$ nanosecond Q-switched Tm, $Ho:YVO_4$ laser is demonstrated. An average output power of 3.64 W is obtained in the band of ~1900 to ~2600 nm, and the corresponding optic-to-optic conversion efficiency is 67% by considering the coupling efficiency. The spectrum has extremely high flatness with negligible intensity variation (<2%) in the wavelength interval of ~2070 to ~2475 nm. The SC long-wavelength edge is limited by the silicon glass material loss, and by optimizing the MMF length, the SC spectrum could extend out to ${\sim}2.6{\mu}m$. The output SC pulse shapes are measured at different output powers, and no splits are found. The SC laser beam is nearly diffraction limited with an $M^2=1.15$ in $2.1{\mu}m$ measured by the traveling knife-edge method, and the laser beam spot is monitored by an infrared vidicon camera.

Passive Remote Chemical Detection of SF6 Clouds in the Atmosphere by FTIR (수동형 FTIR 원격화학 탐지기를 이용한 SF6 오염운의 실시간 탐지)

  • Chong, Eugene;Park, Byeonghwang;Kim, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • Brightness temperature spectra acquired from FTIR(Fourier Transform Infrared)-SCADS (Standoff Chemical Agent Detection System) could be available for detection and identification of the chemical agents and pollutants from different background. IR spectrum range of 770 to 1350 $cm^{-1}$ is corresponding to "atmospheric window". A 2-dimensional(2D) brightness temperature spectrum was drawn from combining each data point through automatic continuous scanning of FTIR along with altitude and azimuth. At higher altitude, temperature of background was decreased but scattering effect of atmospheric gases was increased. Increase in temperature difference between background and blackbody in SCADS at higher temperature causes to increases in peak intensity of $SF_6$. This approach shows us a possibility that 2D visual information is acquired from scanning data with a single FTIR-SCADS.

A Study on Electric Properties of Polyamide Film due to Temperature Change

  • Lee, Sung Ill
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, we measured the leakage current at $30{\sim}80^{\circ}C$ and $90{\sim}170^{\circ}C$ under a voltage of 200~980 V applied to samples (ordinary temperature) and polyamide film specimens degraded at $170^{\circ}C$ for 20 minute respectively. After the specimen was degraded at $130^{\circ}C$ and $50^{\circ}C$, a voltage of 200 to 800 V was applied for 10 to 60 minutes. The measurement of the leakage current resulted in the following conclusions. In the case of using Al and Cu as the main electrode, it was confirmed that the leakage current also increased in high temperatures as the voltage increased. Regardless of the type of main electrode, when the temperature was constant at $130^{\circ}C$ and $50^{\circ}C$, the leakage current increased as the voltage increased, and gradually decreased with time. As a result of the FTIR measurement, the main absorption of the infrared absorption spectrum was C=O at about $1650cm^{-1}$ and N-H diagonal vibration occurred at around $1550cm^{-1}$. There was no change in the material, so no effect of temperature was observed. By the results of SEM measurements, as the temperature of degradation increases, cracks in the specimen disappear. This may be because the amide bond (-CO-NH-) is absorbed by the material.