• Title/Summary/Keyword: infrared (IR) images

Search Result 123, Processing Time 0.036 seconds

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

ROIC Design of HgCdTe FPA for MWIR detection and Implementation of Thermal Image (중적외선 감지용 초점면 배열 HgCdTe의 신호 취득 회로 설계 및 열영상 구현)

  • Kim, Byeong-Hyeok;Lee, Hui-Cheol;Kim, Chung-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.63-71
    • /
    • 2000
  • Infrared (IR) detector chip, which detects the IR radiation from all of the objects and converts to image signal, is usually fabricated using hybrid bonding technology with detector away and readout integrated circuit (ROIC). In this study, we designed the readout circuit and simulated its operations. Fabricating readout circuit chips, we measured operation results satisfying its design requirements in 6V supply voltage. After we mount the IR detector chip in the manufactured thermal image system, thermal images were implemented. The obtained thermal images for high and room temperature target objects are sufficiently recognizable. Using the low noise thermal Image system, we expect to obtain thermal images with higher temperature resolution.

  • PDF

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.4
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

Modeling of Surface Temperature Characteristics on the Ground by using the Measured Weather Condition Data (측정된 기상 조건 데이터를 이용한 지상물체의 표면온도 특성 연구)

  • Choi, Jun-Hyuk;Park, Tae-Won;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.470-477
    • /
    • 2010
  • This paper is a part of developing a program that predicts the surface temperature and the IR images of ground objects by considering solar irradiation and atmospheric convection. The thermal modeling is essential for identifying objects on the scenes obtained from the remote sensing. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We considered the composite heat transfer modes including conduction, convection and spectral solar radiation incident on the objects within a scene to calculate the surface temperature distribution. The surface temperatures obtained by using the S/W developed in this study(Silhouette) and a commercial S/W(SE-Workbench-IR) are computed and compared each other. Results obtained by using the S/W developed in this study(Silhouette) show fairly good agreement with those obtained by the SE-Workbench-IR.

Performance Improvement Technique of Long-range Target Information Acquisition for Airborne IR Camera

  • Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this paper, we propose three compensation methods to solve problems in high-resolution airborne infrared camera and to improve long-range target information acquisition performance. First, image motion and temporal noise reduction technique which is caused by atmospheric turbulence. Second, thermal blurring image correction technique by imperfect performance of NUC(Non Uniformity Correction) or raising the internal temperature of the camera. Finally, DRC(Dynamic Range Compression) and flicker removing technique of 14bits HDR(High Dynamic Range) infrared image. Through this study, we designed techniques to improve the acquisition performance of long-range target information of high-resolution airborne infrared camera, and compared and analyzed the performance improvement result with implemented images.

VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment (해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법)

  • Baek, Inhye;Woo, S.H. Arman
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

Infrared Sensitive Camera Based Finger-Friendly Interactive Display System

  • Ghimire, Deepak;Kim, Joon-Cheol;Lee, Kwang-Jae;Lee, Joon-Whoan
    • International Journal of Contents
    • /
    • v.6 no.4
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper we present a system that enables the user to interact with large display system even without touching the screen. With two infrared sensitive cameras mounted on the bottom left and bottom right of the display system pointing upwards, the user fingertip position on the selected region of interest of each camera view is found using vertical intensity profile of the background subtracted image. The position of the finger in two images of left and right camera is mapped to the display screen coordinate by using pre-determined matrices, which are calculated by interpolating samples of user finger position on the images taken by pointing finger over some known coordinate position of the display system. The screen is then manipulated according to the calculated position and depth of the fingertip with respect to the display system. Experimental results demonstrate an efficient, robust and stable human computer interaction.

Analysis of the Possibility for Practical Use of MSI/ MidIR/ II Vegetation Indices for Drought Detection of Spring Season (MSI/ MidIR/ II 식생지수를 이용한 봄 가뭄탐지 활용 가능성 분석)

  • Kim, Sung-Jae;Choi, Kyung-Sook;Chang, Eun-Mi;Hong, Seong-Wook
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.37-46
    • /
    • 2011
  • In recent years, utilizations of satellite imagery have been extensively conducted in order to obtain accurate information on drought detection in spring season. This research also carried out utilization of satellite imagery through the various vegetation indices such as NDVI(Normalized Difference Vegeation Index), MSI(Moisture Stress Index), MidIR Index, II(Infrared Index) to find better methodology to detect drought phenomena, especially occurring in spring season. For this purpose, Landsat TM(Thematic Mapper) images were used and applied on the Yeong-cheon city. In this study, the characteristics of DN(Digital Number) for each vegetation index is analyzed, and the correlation analysis between indices and DN according to the number of days with no rain is performed. The results shows high correlation between NDVI and MSI and II with positive correlation on MSI, and negative correlation on II. This indicates the possibility for practical use of MSI, II indices with NDVI to obtain better credibility for detecting spring droughts.

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

Design and Software Implementation of Noise Reduction Filter for Mid-wave Infrared Images (중적외선 영상 잡음 감소를 위한 SW 필터의 설계 및 구현)

  • Park, Hyunsung;Kim, Jungho;Lee, Sungho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.500-507
    • /
    • 2016
  • In order to increase the survivability of combatant ship, measuring and analyzing the infrared radiation is important. Consequently, providing analysis report is also important for the progress of the new combatant ship design. This paper proposes a design and software implementation of filtering for the noise reduction of mid-wave IR camera image. We reduced the total test cost by using the suggested software filtering technique instead of hardware replacement or re-calibration. In addition, we enhanced the accuracy of analysis results by adjusting the parameters of software filtering according to the results of filtered image.