• 제목/요약/키워드: infrared: stars

검색결과 224건 처리시간 0.036초

GROUND-BASED NEAR-INFRARED CENSUS FOR YOUNG STAR CLUSTERS IN THE DWARF STARBURST GALAXY NGC 1569

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Chaboyer, Brian
    • 천문학회지
    • /
    • 제43권1호
    • /
    • pp.1-8
    • /
    • 2010
  • JHK near-infrared photometry of star clusters in the dwarf irregular/dwarf starburst galaxy NGC 1569 are presented. After adopting several criteria to exclude other sources (foreground stars, background galaxies, etc.), 154 candidates of star clusters are identified in the near-infrared images of NGC 1569, which include very young star clusters. Especially, from analysis based on theoretical background, we found ten very young star clusters near the center of NGC 1569. The total reddening values toward these clusters are estimated to be $A_V$=1-9 mag from comparison with the theoretical estimates given by the Leitherer et al. (1999)'s star cluster model.

FAR INFRARED GALAXIES IN AKARI'S EYE

  • Malek, K.;Pollo, A.;Takeuchi, T.T.;Giovannoli, E.;Buat, V.;Burgarella, D.;Malkan, M.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.141-144
    • /
    • 2012
  • We present the results of Spectral Energy Distribution (SED) fitting of far-infrared galaxies detected in the AKARI Deep Field-South (ADF-S) Survey and discuss their physical properties. Additionally, we perform a comparison between photometric redshifts estimated using only optical and both optical and infrared data. We conclude that our sample consists mostly of nearby galaxies rich in dust and young stars. We observe an improvement in the estimation of photometric redshifts when the IR data are included, comparing to a standard approach based mainly on the optical to UV photometry.

AKARI INFRARED OBSERVATIONS OF EMBEDDED YSOs IN THE MAGELLANIC CLOUDS

  • Shimonishi, T.;Onaka, T.;Kato, D.;Sakon, I.;Ita, Y.;Kawamura, A.;Kaneda, H.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.171-175
    • /
    • 2012
  • Spectroscopic studies of extragalactic YSOs have shown a great progress in the last few years. Infrared observations with AKARI made significant contributions to that progress. In this proceeding, we are going to introduce our current research on the infrared observations of ices and dust around embedded YSOs in the Magellanic Clouds.

NEAR-INFRARED PHOTOMETRY OF THE STAR CLUSTERS IN THE DWARF IRREGULAR GALAXY IC 5152

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Sohn, Sang-Mo Tony;Sung, Hyun-Il
    • 천문학회지
    • /
    • 제39권4호
    • /
    • pp.89-94
    • /
    • 2006
  • We present JHK-band near-infrared photometry of the star clusters in the dwarf irregular galaxy IC 5152. After excluding possible foreground stars, a number of candidate star clusters are identified in the near-infrared images of IC 5152, which include young populations. Especially, five young star clusters are identified in the(J-H, H-K) two color diagram and the total extinction values toward these clusters are estimated to be $A_v=2-6$ from the comparison with the theoretical values given by the Leitherer et al.(1999)'s theoretical star cluster model.

Determining the stellar parameters of solar-like stars using synthetic spectra

  • 강원석;이상각
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.151.2-151.2
    • /
    • 2011
  • IGRINS (Immersion GRating INfrared Spectrometer) will provide the spectra with high-resolution and an instantaneous spectral coverage of H and K band in NIR region. Therefore, it is expected that the wide coverage of wavelength would make a production of an extensive NIR high-resolution spectra of standard stars as a prior program of IGRINS. As a counter part of these NIR spectra, we have planned to obtain the high-resolution spectra of those standard stars in optical band. These optical high-resolution spectra would give us an opportunity to produce the library of high-resolution stellar spectra covering from optical to NIR band, and to confirm the method to determine the stellar parameters and chemical abundances from the NIR high-resolution spectra. Before using the NIR high-resolution spectra, we have tested the method to determine the stellar parameters by comparing between the observed spectra and the synthetic spectra in optical band. In order to make the synthetic spectra, we have used the Kurucz ATLAS9 model grids and the SYNTH code described by Fiorella Castelli (http://wwwuser.oat.ts.astro.it/castelli/). For the cross-check against the parameters that would be derived from the NIR spectra, the stellar parameters such as effective temperature and surface gravity were determined using the optical spectra of the solar-like stars, as preliminary results.

  • PDF

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO;HAYASHI, MASAHIKO;BECK, TRACY;DAVIS, CHRISTOPHER J.;TAKAMI, MICHIHIRO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.109-112
    • /
    • 2015
  • We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.

IGRINS Spectral Library

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Yuk, In-Soo;Lee, Jae-Joon;Mace, Gregory N.;Kim, Hwihyun;Kaplan, Kyle F.;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.43.3-43.3
    • /
    • 2016
  • We present a library of high-resolution (R~45,000) and high signal-to-noise ratio ($S/N{\geq}200$) near-infrared spectra of 147 standard stars. High quality spectra were obtained with Immersion GRating INfrared Spectrograph (IGRINS) covering the full range of H ($1.496-1.795{\mu}m$) and K ($2.080-2.460{\mu}m$) bands. The targets are mainly selected as MK standard stars which have well-defined spectral types and luminosity classes, and cover a wide range of effective temperatures and surface gravities. The spectra were corrected for telluric absorption lines and absolute flux calibrated using Two Micron All Sky Survey (2MASS) photometry. We find new spectral indices in H and K bands and provide their EWs. We describe empirical relations between the measured EWs and stellar atmosphere parameters such as effective temperature and surface gravity.

  • PDF

NEAR-INFRARED PHOTOMETRIC STUDY OF THE OLD OPEN CLUSTER TRUMPLER 5

  • Kim, Sang-Chul;Kyeong, Jae-Mann;Sung, Eon-Chang
    • 천문학회지
    • /
    • 제42권6호
    • /
    • pp.135-144
    • /
    • 2009
  • We present JHK near-infrared photometric study for the old open cluster (OC) Trumpler 5 (Tr 5), based on the 2MASS data. From the color-magnitude diagrams of Tr 5, we have located the position of the red giant clump (RGC) stars, and used the mean magnitude of the RGC stars in K-band to estimate the distance to Tr 5, d = $3.1{\pm}0.1$ kpc ($(m-M)_0$ = $12.46{\pm}0.04$). From fitting the theoretical isochrones of Padova group, we have estimated the reddening, metallicity, and age : E(B-V) = $0.64{\pm}0:05$, [Fe/H] = $-0.4{\pm}0.1$ dex, and t = $2.8{\pm}0.2$ Gyr (log t = $9.45{\pm}0.04$), respectively. These parameters generally agree well with those obtained from the previous studies on Tr 5 and confirms that this cluster is an old OC with metallicity being metal-poorer than solar abundance, located in the anti-Galactic center region.

MEDIUM RESOLUTION SPECTRAL LIBRARY OF LATE-TYPE STELLAR TEMPLATES IN NEAR-INFRARED BAND

  • Le, Huynh Anh Nguyena;Kang, Won-Seok;Pak, Soo-Jong;Im, Myung-Shin;Lee, Jeong-Eun;Ho, Luis C.;Pyo, Tae-Soo;Jaffe, Daniel T.
    • 천문학회지
    • /
    • 제44권4호
    • /
    • pp.125-134
    • /
    • 2011
  • We present medium resolution (R = 5000 - 6000) spectra in the near-infrared band, 1.4 - 1.8 ${\mu}m$, for template stars in G, K, and M types observed by the echelle spectrometer, IRCS, at the SUBARU 8.2 m telescope. The identification of lines is based on the spectra of Arcturus (K2 III) in the literature. We measured the equivalent of widths and compared our results to those of Meyer et al. (1998). We conclude that our spectral resolution (R = 6000) data can investigate more accurately the properties of lines in stellar spectra. The library of the template stellar spectra in ASCII format are available for download on the World Wide Web.

Korean Participation in All-sky Infrared Spectro-Photomeric Survey Mission, SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Hwang, Hoseong;Song, Yong-Seon
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.45.3-45.3
    • /
    • 2019
  • Since the high throughput for diffuse objects and the wide-area survey even with a small telescope can be achieved in space, infrared (IR) obervations have been tried through small missions in Korea. Based upon the previous technical development for infrared spectro-photometric instrument, NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1, we participated in the all-sky infrared spectro-photometric survey mission, SPHEREx. The SPEHREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech) in this February. As an international partner, KASI will take part in the hardware development, the operation and the science for the SPHEREx. The SPHEREx will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. For the purpose of the all-sky survey, the SPHEREx is designed to have a wide FoV of 3.5 × 11.3 deg. as well as wide spectral range from 0.75 to 5.0㎛. Here, we report the status of the SPHEREx project and the progress in the Korean participation.

  • PDF