• Title/Summary/Keyword: infrared: diffuse background

Search Result 14, Processing Time 0.028 seconds

THE DIFFUSE NEAR-INFRARED BACKGROUND SPECTRUM FROM AKARI

  • Kohji, Tsumura;Toshio, Matsumoto;Shuji, Matsuura;Itsuki, Sakon;Takehiko, Wada
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.321-326
    • /
    • 2017
  • We analyzed spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI InfraRed Camera (IRC) in the $1.8-5.3{\mu}m$ wavelength region. Advanced reduction methods specialized for slit spectroscopy of diffuse sky spectra have been developed, and a catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. Using this catalog, two other major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were separated and subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the $100{\mu}m$ dust thermal emission, respectively. The isotropic emission was interpreted as the extragalactic background light (EBL), which shows significant excess over the integrated light of galaxies at <$4{\mu}m$.

AKARI OBSERVATIONS OF THE FLUCTUATIONS OF THE NEAR-INFRARED BACKGROUND II

  • Seo, H.J.;Lee, H.M.;Matsumoto, T.;Jeong, W.S.;Lee, M.G.;Pyo, J.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.327-329
    • /
    • 2017
  • We report a spatial fluctuation analysis of the sky brightness in the near-infrared from observations towards the north ecliptic pole (NEP) by AKARI at 2.4 and $3.2{\mu}m$. As a follow up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000". After pre-processing, additional correction procedures were done to correct time varying components and instrumental effects such as MUXbleed. To remove resolved objects, we applied $2{\sigma}$ clipping and point spread function (PSF) subtraction. We finally obtained mosaicked images which can be used for the study of various diffuse emissions in the near-infrared sky and found that there are spatial structures in the mosaicked images using a power spectrum analysis.

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}m$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Smoothness of the Zodiacal Light and Emission from the AKARI North Ecliptic Pole Monito rObservations

  • Pyo, Jeong-Hyun;Matsumoto, Toshio;Tange, Tsutomu;Jeong, Woong-Seob;Matsuhara, Hideo;Matsuura, Shuji;Wada, Takehiko;Seo, Hyun-Jong;Hong, Seung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.52.1-52.1
    • /
    • 2010
  • The Japanese infrared (IR) space mission AKARI monitored the brightness in the fields very close to the north ecliptic pole (NEP) with nine wavebands in Infrared Camera (IRC), which cover the wavelength range from 2 to $24{\mu}m$. We reduced the NEP monitor observations and examined the smoothness of the sky background brightness. Our analysis shows that the background brightness is smooth over a frame of about $10'\times10'$ within about 0.1% deviation in mid-IR. Because the zodiacal light (ZL) and emission (ZE) dominate the diffuse sky brightness in the near- and mid-IR wavelengths, the background brightness varies with season through a year. We tried sinusoidal fittings to the observed NEP background brightness. The fitting analysis shows that the sine function is successful in describing the seasonal variation of the ZL and ZE within 2% deviations from the observed brightness, especially for the 15, 18, and $24{\mu}m$ bands, within 0.3%. These results will provide limits and caveats for the studies of the cosmic infrared background radiation.

  • PDF

SMALL-SCALE STRUCTURE OF THE ZODIACAL DUST CLOUD OBSERVED IN FAR-INFRARED WITH AKARI

  • Ootsubo, Takafumi;Doi, Yasuo;Takita, Satoshi;Matsuura, Shuji;Kawada, Mitsunobu;Nakagawa, Takao;Arimatsu, Ko;Tanaka, Masahiro;Kondo, Toru;Ishihara, Daisuke;Usui, Fumihiko;Hattori, Makoto
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2017
  • The zodiacal light emission is the thermal emission from the interplanetary dust and the dominant diffuse radiation in the mid- to far-infrared wavelength region. Even in the far-infrared, the contribution of the zodiacal emission is not negligible at the region near the ecliptic plane. The AKARI far-infrared all-sky survey covered 97% of the whole sky in four photometric bands with band central wavelengths of 65, 90, 140, and $160{\mu}m$. AKARI detected the small-scale structure of the zodiacal dust cloud, such as the asteroidal dust bands and the circumsolar ring, in far-infrared wavelength region. Although the most part of the zodiacal light structure in the AKARI far-infrared all-sky image can be well reproduced with the DIRBE zodiacal light model, there are discrepancies in the small-scale structures. In particular, the intensity and the ecliptic latitude of the peak position of the asteroidal dust bands cannot be reproduced precisely with the DIRBE models. The AKARI observational data during more than one year has advantages over the 10-month DIRBE data in modeling the full-sky zodiacal dust cloud. The resulting small-scale zodiacal light structure template has been used to subtract the zodiacal light from the AKARI all-sky maps.

MODELING OF THE ZODIACAL LIGHT FOR THE AKARI MID-IR ALL-SKY DIFFUSE MAPS

  • Kondo, Toru;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Amatsutsu, Tomoya;Nakamichi, Keichiro;Sano, Hidetoshi;Ootsubo, Takafumi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • The AKARI 9 and 18 µm diffuse maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of ~6". The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic diffuse emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we find that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.

AKARI OBSERVATION OF THE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

  • Matsumoto, T.;Seo, H.J.;Jeong, W.S.;Lee, H.M.;Matsuura, S.;Matsuhara, H.;Oyabu, S.;Pyo, J.;Wada, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.363-365
    • /
    • 2012
  • We report a search for fluctuations of the sky brightness toward the North Ecliptic Pole with AKARI, at 2.4, 3.2, and $4.1{\mu}m$. The stacked images with a diameter of 10 arcminutes of the AKARI-Monitor Field show a spatial structure on the scale of a few hundred arcseconds. A power spectrum analysis shows that there is a significant excess fluctuation at angular scales larger than 100 arcseconds that cannot be explained by zodiacal light, diffuse Galactic light, shot noise of faint galaxies, or clustering of low-redshift galaxies. These findings indicate that the detected fluctuation could be attributed to the first stars of the universe, i.e., Population III stars.

FAR-INFRARED CHARACTERISTICS OF GIANT MOLECULAR CLOUDS (거대 분자운의 원적외선 특성)

  • Jung, Jae-Hoon;Kim, Hyun-Goo;Kim, Bong-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.27-33
    • /
    • 2006
  • Infrared color-color diagram of 10 giant molecular clouds are examined to explore the dust property from the COBE Diffuse Infrared Background Experiment of the 100, 140, and $240{\mu}m$ emission. Four of them, Taurus, Mon OB1, Gem OB1, and Chameleon, show the anti-correlation in $R_{100/140}-R_{140/240}$ plot and the horizontal distribution in $R_{100/240}-R_{140/240}$ plot, which disagree with those of theoretical calculation. These could be explained by the depletion of $100{\mu}m$ and the excess of $140{\mu}m$ emission, though no existing dust model could support them. Mean color temperature of the anti-correlation region appears to be lower than that of the linear region, whose temperatures are 15.3, 17.0 K, respectively. And the linear region shows large dispersion in the plot of intensity relation. Both imply that a star formation would be more active, but not homogeneous, in the linear region compared to the anti-correlation region.

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • Kim, Min-Gyu;Matsumoto, T.;Lee, Hyung-Mok;Arai, T.;Battle, J.;Bock, J.;Brown, S.;Cooray, A.;Hristov, V.;Keating, B.;Korngut, P.;Lee, Dae-Hee;Levenson, L.R.;Lykke, K.;Mason, P.;Matsuura, S.;Nam, U.W.;Renbarger, T.;Smith, A.;Sullivan, I.;Wada, T.;Zemcov, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF