• Title/Summary/Keyword: infrared: ISM: continuum

Search Result 13, Processing Time 0.02 seconds

INFRARED SUPERNOVA REMNANTS IN THE SPITZER GLIMPSE FIELD

  • Lee, Ho-Gyu
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.385-414
    • /
    • 2005
  • We have searched for infrared emission from supernova remnants (SNRs) included in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) field. At the positions of 100 known SNRs, we made 3.6, 4.5, 5.8, and $8.0{\mu}m$ band images covering the radio continuum emitting area of each remnant. In-depth examinations of four band images based on the radio continuum images of SNRs result in the identification of sixteen infrared SNRs in the GLIMPSE field. Eight SNRs show distinct infrared emission in nearly all the four bands, and the other eight SNRs are visible in more than one band. We present four band images for all identified SNRs, and RGB-color images for the first eight SNRs. These images are the first high resolution (<2') images with comparative resolution of the radio continuum for SNRs detected in the mid-infrared region. The images typically show filamentary emission along the radio enhanced SNR boundaries. Most SNRs are well identified in the 4.5 and $5.8{\mu}m$ bands. We give a brief description of the infrared features of the identified SNRs.

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).

RADIO IMAGING OF THE NGC 1333 IRAS 4B REGION

  • Choi, Min-Ho;Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.201-208
    • /
    • 2011
  • The NGC 1333 IRAS 4B region is observed in the 6.9 mm and 1.3 cm continuum with an angular resolution of about 0.4 arcseconds. IRAS 4BI is detected in both bands, and BII is detected in the 6.9 mm continuum only. The 1.3 cm source of BI seems to be a disk-like flattened structure with a size of about 50 AU. IRAS 4BI does not show any sign of multiplicity. Examinations of archival infrared images show that the dominating emission feature in this region is a bright peak in the southern outflow driven by BI, corresponding to the molecular hydrogen emission source HL 9a. Both BI and BII are undetectable in the mid-IR bands. The upper limit on the far-IR flux of IRAS 4BII suggests that it may be a very low luminosity young stellar object.

AKARI IRC INFRARED 2.5-5 ㎛ SPECTROSCOPY OF NEARBY LUMINOUS INFRARED GALAXIES

  • Imanishi, Masatoshi;Nakagawa, Takao;Shirahata, Mai;Ohyama, Yoichi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.271-274
    • /
    • 2012
  • We present the result of systematic AKARI IRC infrared $2.5-5{\mu}m$ spectroscopy of >100 nearby luminous infrared galaxies, to investigate the energetic roles of starbursts and optically-elusive buried AGNs. Based on (1) the equivalent widths of the $3.3{\mu}m$ PAH emission features, (2) the optical depths of absorption features, and (3) continuum slopes, we can disentangle emission from starbursts and AGNs. We find that the energetic importance of buried AGNs increases with increasing galaxy infrared luminosities, suggesting that the AGN-starburst connections (and thereby possible AGN feedback to host galaxies) are luminosity dependent.

THE PROPERTIES OF DUST EMISSION IN THE GALACTIC CENTER REGION REVEALED BY FIS-FTS OBSERVATIONS

  • Yasuda, A.;Kaneda, H.;Takahashi, A.;Nakagawa, T.;Kawada, M.;Okada, Y.;Takahashi, H.;Murakami, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.221-222
    • /
    • 2012
  • We present the results of far-infrared spectral mapping of the Galactic center region with FIS-FTS, which covered the two massive star-forming clusters, Arches and Quintuplet. We find that two dust components with temperatures of about 20 K and 50 K are required to fit the overall continuum spectra. The warm dust emission is spatially correlated with the [OIII] $88{\mu}m$ emission and both are likely to be associated with the two clusters, while the cool dust emission is more widely distributed without any clear spatial correlation with the clusters. We find differences in the properties of the ISM around the two clusters, suggesting that the star-forming activity of the Arches cluster is at an earlier stage than that of the Quintuplet cluster.

LARGE-SCALE [OIII] AND [CII] DISTRIBUTIONS OF THE LARGE MAGELLANIC CLOUD WITH FIS-FTS

  • Takahashi, A.;Yasuda, A.;Kaneda, H.;Kawada, M.;Kiriyama, Y.;Mouri, A.;Mori, T.;Okada, Y.;Takahashi, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.219-220
    • /
    • 2012
  • We present the results of far-infrared spectroscopic observations of the Large Magellanic Cloud (LMC) with FIS-FTS. We covered a large area across the LMC, including 30 Doradus (30 Dor) and N44 star-forming regions, by 191 pointings in total. As a result, we detect the [OIII] and [CII] line emission as well as far-infrared dust continuum emission throughout the LMC. We find that the [OIII] emission is widely distributed around 30 Dor. The observed size of the distribution is too large to be explained by massive stars in 30 Dor, which are assumed to be enshrouded by clouds with the constant gas density estimated from the [OIII] line intensities. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from energetic photons. Furthermore we find that the ratios of [CII]/CO are as high as 110,000 in 30 Dor, and 45,000 even on average, while they are typically 6,000 for star-forming regions in our Galaxy. The unusually high [CII]/CO is also consistent with the picture of clumpy small dense clouds.

INFRARED EXCESS AND MOLECULAR GAS IN GALACTIC SUPERSHELLS

  • LEE JEONG-EUN;KIM KEE- TAE;KOO BON -CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.41-53
    • /
    • 1999
  • We have carried out high-resolution observations along one-dimensional cuts through the three Galactic super-shells GS 064-01-97, GS 090-28-17, and GS 174+02-64 in the HI 21 cm and CO J=l-0 lines. By comparing the HI data with IRAS data, we have derived the distributions of the $I_{100}$ and $T_{100}$ excesses, which are, respectively, the 100 ${\mu}m$ intensity and 100 ${\mu}m$ optical depth in excess of what would be expected from HI emission. We have found that both the $I_{100}$ and $T_{100}$ excesses have good correlations with the CO integrated intensity W co in all three supershells. But the $I_{100}$ excess appears to underestimate $H_2$ column density N($H_2$) by factors of 1.5-3.8. This factor is the ratio of atomic to molecular infrared emissivities, and we show that it can be roughly determined from the HI and IRAS data. By comparing the $T_{100}$ excess with $W_{co}$, we derive the conversion factor X $\equiv$ N ($H_2$) /$W_{co}{\simeq}$ 0.26 - 0.66 in the three supershells. In GS 090- 28-17, which is a very diffuse shell, our result suggests that the region with N($H_2$) $\le$ $3 {\times} 10^{20} cm^{-2}$ does not have observable CO emission, which appears to be consistent with previous results indicating that diffuse molecular gas is not observable in CO. Our results show that the molecular gas has a 60/100 ${\mu}m$ color temperature $T_d$ lower than the atomic gas. The low value of $T_d$ might be due either to the low equilibrium temperature or to the lower abundance of small grains, or a combination of both.

  • PDF

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

PROPERTIES OF DUST IN EARLY-TYPE GALAXIES BASED ON THE ALL-SKY-SURVEY DATA AND NEAR-INFRARED SPECTRA

  • Mori, T.;Oyabu, S.;Kaneda, H.;Ishihara, D.;Yamagishi, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.263-264
    • /
    • 2012
  • We present the properties of dust and the near-infrared spectral features in nearby early-type galaxies. The properties of dust are obtained from the AKARI far-infrared all-sky survey diffuse map. The AKARI/IRC is used for the near-infrared spectra. We improve spectral data with the new dark subtraction method on the basis of the knowledge acquired in our laboratory experiments of the engineering-model detector for the IRC. We have succeeded in fitting the continuum by a power-law function and detecting CO and SiO absorption features in early-type galaxy spectra. Comparing the properties of dust and near-infrared spectral features, we find that the power-law slope depends on dust temperature, but not on the dust mass, which suggests that low-luminosity AGNs may contribute to the changes in the power-law slope and dust temperature.