DOI QR코드

DOI QR Code

RADIO IMAGING OF THE NGC 1333 IRAS 4B REGION

  • Choi, Min-Ho (Korea Astronomy and Space Science Institute) ;
  • Lee, Jeong-Eun (Department of Astronomy and Space Science, Kyung Hee University)
  • Received : 2011.08.24
  • Accepted : 2011.09.23
  • Published : 2011.10.31

Abstract

The NGC 1333 IRAS 4B region is observed in the 6.9 mm and 1.3 cm continuum with an angular resolution of about 0.4 arcseconds. IRAS 4BI is detected in both bands, and BII is detected in the 6.9 mm continuum only. The 1.3 cm source of BI seems to be a disk-like flattened structure with a size of about 50 AU. IRAS 4BI does not show any sign of multiplicity. Examinations of archival infrared images show that the dominating emission feature in this region is a bright peak in the southern outflow driven by BI, corresponding to the molecular hydrogen emission source HL 9a. Both BI and BII are undetectable in the mid-IR bands. The upper limit on the far-IR flux of IRAS 4BII suggests that it may be a very low luminosity young stellar object.

Keywords

References

  1. Beckwith, S. V. W., & Sargent, A. I. 1991, Particle Emissivity in Circumstellar Disks, ApJ, 381, 250 https://doi.org/10.1086/170646
  2. Blake, G. A., Sandell, G., van Dishoeck, E. F., Groes- beck, T. D., Mundy, L. G., & Aspin, C. 1995, A Molecular Line Study of NGC 1333/IRAS 4, ApJ, 441, 689 https://doi.org/10.1086/175392
  3. Boss, A. P., & Yorke, H. W. 1995, Spectral Energy of First Protostellar Cores: Detecting "Class -I" Protostars with ISO and SIRTF, ApJ, 439, L55 https://doi.org/10.1086/187743
  4. Choi, M. 2001, High-Resolution Observations of the Molecular Clouds in the NGC 1333 IRAS 4 Region, ApJ, 553, 219 https://doi.org/10.1086/320657
  5. Choi, M., Hodapp, K. W., Hayashi, M., Motohara, K., Pak, S., & Pyo, T.-S. 2006, Variability of the NGC 1333 IRAS 4A Outflow: Molecular Hydrogen and Silicon Monoxide Images, ApJ, 646, 1050 https://doi.org/10.1086/505037
  6. Choi, M., Kamazaki, T., Tatematsu, K., & Panis, J.-F. 2004, Structure of the Dense Molecular Gas in the NGC 1333 IRAS 4 Region, ApJ, 617, 1157 https://doi.org/10.1086/425898
  7. Choi, M., Kang, M., Tatematsu, K., Lee, J.-E., & Park, G. 2011, Radio Imaging of the NGC 1333 IRAS 4A Region: Envelope, Disks, and Outflows of a Protostellar Binary System, PASJ, 63, in press (arXiv:1107.3877)
  8. Choi, M., Panis, J.-F., & Evans, N. J., II 1999, Berkeley-Illinois-Maryland Association Survey of Protostellar Collapse Candidates in $HCO^+$ and HCN Lines, ApJS, 122, 519 https://doi.org/10.1086/313222
  9. Choi, M., Tatematsu, K., & Kang, M. 2010, Kinematics of the Ammonia Disk around the Protostar NGC 1333 IRAS 4A2, ApJ, 723, L34 https://doi.org/10.1088/2041-8205/723/1/L34
  10. Choi, M., Tatematsu, K., Park, G., & Kang, M. 2007, Ammonia Imaging of the Disks in the NGC 1333 IRAS 4A Protobinary System, ApJ, 667, L183 https://doi.org/10.1086/522116
  11. Crapsi, A., et al. 2005, Dynamical and Chemical Prop- erties of the "Starless" Core L1014, A&A, 439, 1023 https://doi.org/10.1051/0004-6361:20042411
  12. Desmurs, J.-F., Codella, C., Santiago-Garcia, J., Tafalla, M., & Bachiller, R. 2009, The Extremely Collimated Bipolar $H_2O$ Jet from the NGC 1333- IRAS 4B Protostar, A&A, 498, 753 https://doi.org/10.1051/0004-6361/200811365
  13. Di Francesco, J., Myers, P. C., Wilner, D. J., Ohashi, N., & Mardones, D. 2001, Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4, ApJ, 562, 770 https://doi.org/10.1086/323854
  14. Dunham, M. M., Crapsi, A., Evans, N. J., II, Bourke, T. L., Huard, T. L., Myers, P. C., & Kauffmann, J. 2008, Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores, ApJS, 179, 249 https://doi.org/10.1086/591085
  15. Enoch, M. L., Evans, N. J., II, Sargent, A. I., & Glenn, J. 2009, Properties of the Youngest Protostars in Perseus, Serpens, and Ophiuchus, ApJ, 692, 973 https://doi.org/10.1088/0004-637X/692/2/973
  16. Enoch, M. L., Lee, J.-E., Harvey, P., Dunham, M. M., & Schnee, S. 2010, A Candidate Detection of the First Hydrostatic Core, ApJ, 722, L33 https://doi.org/10.1088/2041-8205/722/1/L33
  17. Herczeg, G. J., et al. 2011, Water in Star-Forming Regions with Herschel: Highly Excited Molecular Emission from the NGC 1333 IRAS4B Outflow, sub- mitted to A&A
  18. Hirota, T., et al. 2008, Astrometry of $H_2O$ Masers in Nearby Star-Forming Regions with VERA. II. SVS13 in NGC1333, PASJ, 60, 37 https://doi.org/10.1093/pasj/60.1.37
  19. Hodapp, K.-W., & Ladd, E. F. 1995, Bipolar Jets from Extremely Young Stars Observed in Molecular Hydrogen Emission, ApJ, 453, 715 https://doi.org/10.1086/176432
  20. Jennings, R. E., Cameron, D. H. M., Cudlip, W., & Hirst, C. J. 1987, IRAS Observations of NGC1333, MNRAS, 226, 461 https://doi.org/10.1093/mnras/226.2.461
  21. Jorgensen, J. K., & van Dishoeck, E. F. 2010, Water Vapor in the Inner 25 AU of a Young Disk around a Low-Mass Protostar, ApJ, 710, L72 https://doi.org/10.1088/2041-8205/710/1/L72
  22. Jorgensen, J. K., et al. 2007, PROSAC: A Submil- limeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows, and Hot Cores, ApJ, 659, 479 https://doi.org/10.1086/512230
  23. Lay, O. P., Carlstrom, J. E., & Hills, R. E. 1995, NGC 1333 IRAS 4: Further Multiplicity Revealed with the CSO-JCMT Interferometer, ApJ, 452, L73
  24. Lee, J.-E. 2007, Chemical Evolution in VeLLOs, JKAS, 40, 85
  25. Looney, L.W., Mundy, L. G., &Welch,W. J. 2000, Un- veiling the Circumstellar Envelope and Disk: A Sub- arcsecond Survey of Circumstellar Structures, ApJ, 529, 477 https://doi.org/10.1086/308239
  26. Marvel, K. B., Wilking, B. A., Claussen, M. J., & Wootten, A. 2008, Time-Resolved AU-Scale Jets Traced by Masers in the IRAS 4A/B Regions of NGC 1333, ApJ, 685, 285 https://doi.org/10.1086/590465
  27. Masunaga, H., Miyama, S. M., & Inutsuka, S.-I. 1998, A Radiation Hydrodynamic Model for Protostellar Collapse. I. The First Collapse, ApJ, 495, 346 https://doi.org/10.1086/305281
  28. Park, G., & Choi, M. 2007, Observations of Water Masers in the NGC 1333 IRAS 4 Region, ApJ, 664, L99 https://doi.org/10.1086/520810
  29. Reipurth, B., Rodriguez, L. F., Anglada, G., & Bally, J. 2002, Radio Continuum Maps of Deeply Embedded Protostars: Thermal Jets, Multiplicity, and Vari- ability, AJ, 124, 1045 https://doi.org/10.1086/341172
  30. Rodriguez, L. F., Anglada, G., & Curiel, S. 1999, The Nature of the Radio Continuum Sources Embedded in the HH 7-11 Region and Its Surroundings, ApJS, 125, 427 https://doi.org/10.1086/313283
  31. Rodriguez, L. F., Anglada, G., Torrelles, J. M., Mendoza-Torres, J. E., Haschick, A. D., & Ho, P. T. P. 2002, VLA Observations of Water Maser Emis- sion Associated with SVS 13 and Other Sources in NGC 1333, A&A, 389, 572 https://doi.org/10.1051/0004-6361:20020619
  32. Sandell, G., Aspin, C., Duncan, W. D., Russell, A. P. G., & Robson, E. I. 1991, NGC 1333 IRAS 4 - A Very Young, Low-Luminosity Binary System, ApJ, 376, L17 https://doi.org/10.1086/186092
  33. Shu, F. H., Adams, F. C., & Lizano, S. 1987, Star Formation in Molecular Clouds: Observation and Theory, ARA&A, 25, 23 https://doi.org/10.1146/annurev.aa.25.090187.000323
  34. Smith, K. W., Bonnell, I. A., Emerson, J. P., & Jen- ness, T. 2000, NGC 1333/IRAS 4: a Multiple Star Formation Laboratory, MNRAS, 319, 991 https://doi.org/10.1046/j.1365-8711.2000.03564.x
  35. Young, C. H., et al. 2004, A "Starless" Core that Isn't: Detection of a Source in the L1014 Dense Core with the Spitzer Space Telescope, ApJS, 154, 396 https://doi.org/10.1086/422818

Cited by

  1. DISTRIBUTION OF CH3OH IN NGC 1333 IRAS4B vol.754, pp.1, 2012, https://doi.org/10.1088/0004-637X/754/1/70
  2. Constraining the physical structure of the inner few 100 AU scales of deeply embedded low-mass protostars vol.590, 2016, https://doi.org/10.1051/0004-6361/201527666