• 제목/요약/키워드: informative predictor subspace

검색결과 2건 처리시간 0.014초

다변량회귀에서 정보적 설명 변수 공간의 추정과 투영-재표본 정보적 설명 변수 공간 추정의 고찰 (Note on the estimation of informative predictor subspace and projective-resampling informative predictor subspace)

  • 유재근
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.657-666
    • /
    • 2022
  • 정보적 설명 변수 공간은 일반적인 충분차원축소 방법들이 요구하는 가정들이 만족하지 않을 때 중심부분공간을 추정하기 위해 유용하다. 최근 Ko와 Yoo (2022)는 다변량 회귀에서 Li 등 (2008)이 제시한 투영-재표본 방법론을 사용하여 정보적 설명 변수 공간이 아닌 투영-재표본 정보적 설명 변수 공간을 새로이 정의하였다. 이 공간은 기존의 정보적 설명 변수 공간에 포함되지만 중심 부분 공간을 포함한다. 본 논문에서는 다변량 회귀에서 정보적 설명 변수 공간을 직접적으로 추정할 수 있는 방법을 제안하고, 이를 Ko와 Yoo (2022)가 제시한 방법과 이론적으로 그리고 모의실험을 통해 비교하고자 한다. 모의실험에 따르면 Ko-Yoo 방법론이 본 논문에서 제시한 추정 방법보다 더 정확하게 중심 부분 공간을 추정하고, 추정값들의 변동이 적다는 측면에서 보다 더 효율적임을 알 수 있다.

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.