• Title/Summary/Keyword: information layer

Search Result 5,632, Processing Time 0.04 seconds

A Service Composition using Hierarchical Model in Multiple Service Environment

  • Tang, Jiamei;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1091-1097
    • /
    • 2015
  • Internet-of-Things (IoT) becomes one of the most promising future paradigms, which foresees enormous amounts of interoperable things and heterogeneous services. The goal of IoT is to enable all things connected and brings all kinds information and services to people. However, such a great deal of information may lead to cognitive overload or restrain in productivity of people. Thus, it is a necessity to build intelligent mechanisms to assist people in accessing the information or services they needed in a proactive manner. Most of previous related mechanisms are built on well-defined web services and lack of consideration of constrained resources. This paper suggests a services composition method by adapting a hierarchical model, which is a graph-based model composed of four layers: Context Layer, Event Layer, Service Layer and Device Layer. With a such multi-layer graph, service composition can be achieved by the iteration of layer by layer. Then, to evaluate the effectiveness of this proposed hierarchical model, a real-life emergency response dataset is applied and the experimental results are composed with the general probabilistic method and indicate that the proposed method is help for compositing multiple services while considering given context and constrained resources.

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF

Etching-Bonding-Thin film deposition Process for MEMS-IR SENSOR Application (MEMS-IR SENSOR용 식각-접합-박막증착 기반공정)

  • Park, Yun-Kwon;Joo, Byeong-Kwon;Park, Heung-Woo;Park, Jung-Ho;Yom, S.S.;Suh, Sang-Hee;Oh, Myung-Hwan;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2501-2503
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PTO layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PTO layer of c-axial orientation raised thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PTO layer were measured, too.

  • PDF

Property analysis of multi layer Organic Light Emitting Diodes using equivalent circuit models (등가 회로 모델을 이용한 다층 유기발광 소자의 특성 분석)

  • Park, Hyung-Jun;Kim, Hyun-Min;Yi, Jun-Sin;Nam, Eun-Kyoung;Jung, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-120
    • /
    • 2006
  • The impedance spectroscopy is one of the effective ways to understand the electrical properties of organic light emitting diodes. The frequency-dependant properties of small molecule based OLEDs have been studied. The equivalent circuit of single-layer device is composed of contact resistance ($R_c$), bulk resistance ($R_p$) and bulk capacitance ($C_p$). The equivalent circuit of double layer device is composed of two parallel circuits connected in series, each of which is a parallel resistor and a capacitor. We have fabricated a double layer device indium-rio-oxide (ITO, anode), N,NV -diphenyl- N,NV -bis(3-methylphenyI)-1,1V -diphenyl-4,4V-diamine (TPD, hole-transporting layer), tris-(8-hydroxyquinoline) aluminum (Alq3, emitting layer), and aluminum (AI, cathode) and two single layer devices ([TO/ Alq3/ AI, ITO/TPD/AI).

  • PDF

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

An Integrated Region-Related Information Searching System applying of Map Interface and Knowledge Processing (맵 인터페이스와 지식처리를 활용한 지역관련정보 통합검색 시스템)

  • Shin, Jin-Joo;Seo, Kyung-Seok;Jang, Yong-Hee;Kwon, Yong-Jin
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.129-140
    • /
    • 2010
  • Large portal sites such as Google, NAVER provide Various services based on the map. Thus, interest and demand of users who want to obtain the region-related information has been increased. And services that combine the regional information with the map are provided currently at the large portal sites. However, the existing services of large portal sites do not provide enough detailed information and are inconvenient because acquisition process of related information is repeated. Therefore, the system that enables users to obtain detailed information related on the specific region synthetically and easily is needed. In this paper, we propose a system model using map interface and knowledge-processing in order to build the system that is useful for acquiring regional information. The model consists of 3-Layers: 'Regional Information Web-Documents Layer', 'Unique Regional Information Layer', and "Map-Interface Layer'. The Integrated Region~Related Information Searching System based on the model is implemented through the following 4-steps: (1) extracting the keywords that represent specific region (2) collecting the related web pages (3) extracting a set of related keywords and computing an association between the keywords (4) implementing a user interface. We verified validity on the model we proposed. knowledge-processing algorithm using affinity matrix, and UI that help users conveniently search by applying the system to region of the Goyang City. This system integrates regional information existing merely individual 'information' and provides users the 'knowledge' that is newly produced and organized. Users can obtain various detailed regional information and easily get related information through this system.

On the Application of Channel Characteristic-Based Physical Layer Authentication in Industrial Wireless Networks

  • Wang, Qiuhua;Kang, Mingyang;Yuan, Lifeng;Wang, Yunlu;Miao, Gongxun;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2255-2281
    • /
    • 2021
  • Channel characteristic-based physical layer authentication is one potential identity authentication scheme in wireless communication, such as used in a fog computing environment. While existing channel characteristic-based physical layer authentication schemes may be efficient when deployed in the conventional wireless network environment, they may be less efficient and practical for the industrial wireless communication environment due to the varying requirements. We observe that this is a topic that is understudied, and therefore in this paper, we review the constructions and performance of several commonly used test statistics and analyze their performance in typical industrial wireless networks using simulation experiments. The findings from the simulations show a number of limitations in existing channel characteristic-based physical layer authentication schemes. Therefore, we believe that it is a good idea to combine machine learning and multiple test statistics for identity authentication in future industrial wireless network deployment. Four machine learning methods prove that the scheme significantly improves the authentication accuracy and solves the challenge of choosing a threshold.

Development of Out-of-Band Processor in POD Module for OpenCable (Opencable용 POD 모듈의 Gut-of-Band Processor 개발)

  • 임기택;최광호;위정욱;서정욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.101-104
    • /
    • 2001
  • In this paper, we have analyzed algorithm about physical layer, data link layer and MAC layer of out-of-band specified in the DVS 178 and designed architecture of Out-of-band processor. Out-of-band processor extracts session key information from EMM packet to descramble MPEG-2 TS packet scrambled. Also, analyze EAS Packet including emergency alert information to provide emergency communications such as national emergency. In this paper, we have implemented prototype board for out-of-band processor.

  • PDF

Enhanced Fuzzy Multi-Layer Perceptron

  • Kim, Kwang-Baek;Park, Choong-Sik;Abhjit Pandya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.1-5
    • /
    • 2004
  • In this paper, we propose a novel approach for evolving the architecture of a multi-layer neural network. Our method uses combined ART1 algorithm and Max-Min neural network to self-generate nodes in the hidden layer. We have applied the. proposed method to the problem of recognizing ID number in student identity cards. Experimental results with a real database show that the proposed method has better performance than a conventional neural network.

  • PDF