• 제목/요약/키워드: information filtering system

검색결과 1,372건 처리시간 0.024초

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.

혼합 필터링 기반의 영화 추천 시스템에 관한 연구 (A Study on Movies Recommendation System of Hybrid Filtering-Based)

  • 정인용;양새동;정회경
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.113-118
    • /
    • 2015
  • 추천 시스템은 증가되고 있는 정보에서 사용자가 요구하는 적합한 정보를 선별해 제공해준다. 추천 시스템은 기존에 입력된 정보들을 알고리즘을 통해 선별하는 과정을 거치고 사용자의 정보나 내용 기반으로 정보를 제공한다. 추천 시스템의 문제점으로는 Cold-Start가 있으며, Cold-Start는 새로운 사용자의 정보가 충분하지 않아서 추천 시스템에서 새로운 사용자에게 정보를 추천할 때 발생한다. Cold-Start를 해결하기 위해선 사용자의 정보나 항목 정보가 충족해야 한다. 이에 본 논문에서는 협업 필터링 기법과 내용 기반의 필터링 기법을 혼합한 혼합 필터링 기법 기반으로 Cold-Start 문제를 해결하고 이를 사용하는 영화 추천 시스템을 제안한다.

An Approach to Credibility Enhancement of Automated Collaborative Filtering System through Accommodating User's Rating Behavior

  • Sung, Jang-Hwan;Park, Jong-Hun
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.576-581
    • /
    • 2007
  • The purpose of this paper is to strengthen trust on the automated collaborative filtering system. Automated collaborative filtering system is quickly becoming a popular technique for recommendation system. This elaborative methodology contributes for reducing information overload and the result becomes index of users' preference. In addition, it can be applied to various industries in various fields. After it collaborative filtering system was developed, many researches are executed to enhance credibility and to apply in various fields. Among these diverse systems, collaborative filtering system which uses Pearson correlation coefficient is most common in many researches. In this paper, we proposed new process diagram of collaborative filtering algorithm and new factors which should improve the credibility of system. In addition, the effects and relationships are also tested.

  • PDF

A Study of Efficiency Information Filtering System using One-Hot Long Short-Term Memory

  • Kim, Hee sook;Lee, Min Hi
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.83-89
    • /
    • 2017
  • In this paper, we propose an extended method of one-hot Long Short-Term Memory (LSTM) and evaluate the performance on spam filtering task. Most of traditional methods proposed for spam filtering task use word occurrences to represent spam or non-spam messages and all syntactic and semantic information are ignored. Major issue appears when both spam and non-spam messages share many common words and noise words. Therefore, it becomes challenging to the system to filter correct labels between spam and non-spam. Unlike previous studies on information filtering task, instead of using only word occurrence and word context as in probabilistic models, we apply a neural network-based approach to train the system filter for a better performance. In addition to one-hot representation, using term weight with attention mechanism allows classifier to focus on potential words which most likely appear in spam and non-spam collection. As a result, we obtained some improvement over the performances of the previous methods. We find out using region embedding and pooling features on the top of LSTM along with attention mechanism allows system to explore a better document representation for filtering task in general.

An Intelligent Recommendation Service System for Offering Halal Food (IRSH) Based on Dynamic Profiles

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.260-270
    • /
    • 2019
  • As the growth of developing Islamic countries, Muslims are into the world. The most important thing for Muslims to purchase food, ingredient, cosmetics and other products are whether they were certified as 'Halal'. With the increasing number of Muslim tourists and residents in Korea, Halal restaurants and markets are on the rise. However, the service that provides information on Halal restaurants and markets in Korea is very limited. Especially, the application of recommendation system technology is effective to provide Halal restaurant information to users efficiently. The profiling of Halal restaurant information should be preceded by design of recommendation system, and design of recommendation algorithm is most important part in designing recommendation system. In this paper, an Intelligent Recommendation Service system for offering Halal food (IRSH) based on dynamic profiles was proposed. The proposed system recommend a customized Halal restaurant, and proposed recommendation algorithm uses hybrid filtering which is combined by content-based filtering, collaborative filtering and location-based filtering. The proposed algorithm combines several filtering techniques in order to improve the accuracy of recommendation by complementing the various problems of each filtering. The experiment of performance evaluation for comparing with existed restaurant recommendation system was proceeded, and result that proposed IRSH increase recommendation accuracy using Halal contents was deducted.

Movie Recommendation Algorithm Using Social Network Analysis to Alleviate Cold-Start Problem

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.616-631
    • /
    • 2019
  • With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.

Dynamic Fuzzy Cluster based Collaborative Filtering

  • Min, Sung-Hwan;Han, Ingoo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.203-210
    • /
    • 2004
  • Due to the explosion of e-commerce, recommender systems are rapidly becoming a core tool to accelerate cross-selling and strengthen customer loyalty. There are two prevalent approaches for building recommender systems - content-based recommending and collaborative filtering. Collaborative filtering recommender systems have been very successful in both information filtering domains and e-commerce domains, and many researchers have presented variations of collaborative filtering to increase its performance. However, the current research on recommendation has paid little attention to the use of time related data in the recommendation process. Up to now there has not been any study on collaborative filtering to reflect changes in user interest. This paper proposes dynamic fuzzy clustering algorithm and apply it to collaborative filtering algorithm for dynamic recommendations. The proposed methodology detects changes in customer behavior using the customer data at different periods of time and improves the performance of recommendations using information on changes. The results of the evaluation experiment show the proposed model's improvement in making recommendations.

  • PDF

Linux 운영체제에서 Packet Filtering 방식을 이용한 방화벽 시스템의 구현 (Implementation of Firewall System Using Packet Filtering Method in the Linux OS)

  • 한상현;안동언;정성종
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.77-80
    • /
    • 2003
  • Complying with highly demand of information through internet. the utility of computer and network is rapidly provided with to schools. This situation brings about many problems. For example, the stolen information through false identification(Hacking) is the most greatest concern. In this paper it tells that the efficient way of preservating computer use is by using operating system of Open Source, which is Linux system. Further more, it shows the system which was organized by IP-Tabling (offered service-Packet Filtering method from the Linux system) functions well as a security system.

  • PDF

협력적 여과(Collaborative Filtering)에서 결측치(Missing Value) 예측에 관한 연구 (The Research fur Prediction of Missing Value in Collaborative Filtering)

  • 황철현;박영길;박용준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.333-337
    • /
    • 2000
  • 성공적인 사이트를 위한 필수적인 요소로 각광받고 있는 collaborative filtering 기술은 정보의 과부하를 줄일 수 있고 고객에 대한 충성도를 높여주는 효과로 인해 많은 사이트에 적용되어 운용되고 있다. 이 논문에서는 collaborative filtering 적용 포기에 발생하는 정보의 부족으로 인한 정확도 저하를 막기 위해 상품간 연관성을 이용한 결측티 예측 방안을 제안한다.

  • PDF

A Strategy Study on Sensitive Information Filtering for Personal Information Protect in Big Data Analyze

  • Koo, Gun-Seo
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.101-108
    • /
    • 2017
  • The study proposed a system that filters the data that is entered when analyzing big data such as SNS and BLOG. Personal information includes impersonal personal information, but there is also personal information that distinguishes it from personal information, such as religious institution, personal feelings, thoughts, or beliefs. Define these personally identifiable information as sensitive information. In order to prevent this, Article 23 of the Privacy Act has clauses on the collection and utilization of the information. The proposed system structure is divided into two stages, including Big Data Processing Processes and Sensitive Information Filtering Processes, and Big Data processing is analyzed and applied in Big Data collection in four stages. Big Data Processing Processes include data collection and storage, vocabulary analysis and parsing and semantics. Sensitive Information Filtering Processes includes sensitive information questionnaires, establishing sensitive information DB, qualifying information, filtering sensitive information, and reliability analysis. As a result, the number of Big Data performed in the experiment was carried out at 84.13%, until 7553 of 8978 was produced to create the Ontology Generation. There is considerable significan ce to the point that Performing a sensitive information cut phase was carried out by 98%.