• 제목/요약/키워드: information classification

검색결과 8,419건 처리시간 0.04초

국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교 (Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC)

  • 최영현;이규혜
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.91-108
    • /
    • 2020
  • 박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.

혁명시기 중국공산당의 문서당안관리 (Chinese Communist Party's Management of Records & Archives during the Chinese Revolution Period)

  • 이원규
    • 기록학연구
    • /
    • 제22호
    • /
    • pp.157-199
    • /
    • 2009
  • 중국공산당의 창당과 함께 문서와 당안 관리 조직이 출현한 것은 아니었다. 1926년 중앙 비서처가 설립된 이후 문서과와 그 소속 문건열람처, 문건보관처 등이 설립됨으로써 본격화되었던 것이다. 1930년대 초 비서조직의 업무개선이 집중적으로 논의되었는데, 비판의 핵심은 정치적 역할을 자각하지 못한 채 단순히 "기능적 조직"으로 전락하고 말았다는 것이었고, 이의 해결 방안은 곧 "비서처 업무의 정치화"였다. 나아가 1940년대에는 "정풍운동"의 영향으로 문서만이 아니라 각종 주요 정보자료를 수집하여 정리, 제공하는 재료과의 임무가 강조되었다. 한편, 문서의 작성에 있어서 인물이나 기관의 명칭을 다르게 표기한다든가 약물을 사용하여 문서를 작성하는 등 보안의 유지가 줄곧 강조되었으며, 또한 업무활동과 지역의 상황에 대한 정기보고를 통해 중앙과 지방간의 소통이 강조되었다. 비서장은 중요 공문의 초안을 작성하는 것은 물론, 모든 문건의 열람과 심사를 담당하여 문서처리의 중심적 역할을 수행하였다. 문서의 처리가 끝나면 당안이라고 불리우며 보관되었는데, 중앙 비서처 문서과의 "문건보관처"가 이러한 역할을 담당하였다. "중앙문고"라고 불리기도 한 문건보관처는 1930년대 초부터 더 이상 당안을 이관받을 수 없었지만, 1940년대에는 재료과가 문서와 간행재료를 보존하고 제공하는 역할을 강화해갔다. 특히 조사연구를 위한 재료의 수집이 실행되었고, 일본의 통치 아래에 있던 지역을 회복하면서 대량의 당안과 문헌 자료를 수집하기도 하였다. 1931년 당안의 분류방법과 목록작성방법이 규정된 이후 특히 1940년대에 본격적으로 제도화되었는데, 기본적으로는 주제분류법이 유지되었고 기초적인 목록표기법이 채택되었다. "중요성"과 "기밀성"을 관리의 기준으로 삼는 원칙은 비교적 초기부터 나타났지만, 문서의 보존과 폐기를 구분하는 평가의 개념이나 절차는 명확치 않았다. 비밀의 보안관리와 접근제한의 제도를 실행하는 한편, "보존과 이용의 통일"이라는 구호에서도 알 수 있듯이 당안재료의 이용제공에 대한 문제의식은 매우 강렬하였다. 혁명운동과 전쟁의 와중에서도 중국공산당은 문서당안의 관리와 보존을 강화해가는 노력을 지속했다. 그 성과가 항상 바람직한 것도 아니었고, 그 경험을 안정적으로 발전시켜갈 수 있었던 것도 아니었다. 그것은 필경 중국공산당이 처해 있던 역사적 여건에서는 불가피한 일이었을 것이다. 이 과정에서 두드러지게 나타난 특성은 단지 기능적인 수준에서 문서당안관리의 효율화를 추진했던 것이 아니라 것이 아니라, 오히려 중국공산당의 혁명운동에 미치는 정치적 의의에 대한 자각을 강화해가며, 혁명 정책 연구의 실증적 근거이자 또한 중국공산당 역사의 증거로서 당안재료가 갖는 가치에 주목하였던 것에서 찾을 수 있을 것이다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구 (A Study of 'Emotion Trigger' by Text Mining Techniques)

  • 안주영;배정환;한남기;송민
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.69-92
    • /
    • 2015
  • 최근 소셜 미디어의 사용이 폭발적으로 증가함에 따라 이용자가 직접 생성하는 방대한 데이터를 분석하기 위한 다양한 텍스트 마이닝(text mining) 기법들에 대한 연구가 활발히 이루어지고 있다. 이에 따라 텍스트 분석을 위한 알고리듬(algorithm)의 정확도와 수준 역시 높아지고 있으나, 특히 감성 분석(sentimental analysis)의 영역에서 언어의 문법적 요소만을 적용하는데 그쳐 화용론적 의미론적 요소를 고려하지 못한다는 한계를 지닌다. 본 연구는 이러한 한계를 보완하기 위해 기존의 알고리듬 보다 의미 자질을 폭 넓게 고려할 수 있는 Word2Vec 기법을 적용하였다. 또한 한국어 품사 중 형용사를 감정을 표현하는 '감정어휘'로 분류하고, Word2Vec 모델을 통해 추출된 감정어휘의 연관어 중 명사를 해당 감정을 유발하는 요인이라고 정의하여 이 전체 과정을 'Emotion Trigger'라 명명하였다. 본 연구는 사례 연구(case study)로 사회적 이슈가 된 세 직업군(교수, 검사, 의사)의 특정 사건들을 연구 대상으로 선정하고, 이 사건들에 대한 대중들의 인식에 대해 분석하고자 한다. 특정 사건들에 대한 일반 여론과 직접적으로 표출된 개인 의견 모두를 고려하기 위하여 뉴스(news), 블로그(blog), 트위터(twitter)를 데이터 수집 대상으로 선정하였고, 수집된 데이터는 유의미한 연구 결과를 보여줄 수 있을 정도로 그 규모가 크며, 추후 다양한 연구가 가능한 시계열(time series) 데이터이다. 본 연구의 의의는 키워드(keyword)간의 관계를 밝힘에 있어, 기존 감성 분석의 한계를 극복하기 위해 Word2Vec 기법을 적용하여 의미론적 요소를 결합했다는 점이다. 그 과정에서 감정을 유발하는 Emotion Trigger를 찾아낼 수 있었으며, 이는 사회적 이슈에 대한 일반 대중의 반응을 파악하고, 그 원인을 찾아 사회적 문제를 해결하는데 도움이 될 수 있을 것이다.

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

부비동염에 관한 전산화단층방사선학적 연구 (Computerized Tomographic Study on the Paranasal Sinusitis)

  • 최선영;임숙영;고광준
    • 치과방사선
    • /
    • 제29권2호
    • /
    • pp.459-475
    • /
    • 1999
  • Objectives : The purpose of this study is to evaluate the computed tomographic (CT) images of the paranasal sinusitis(PNS). Materials and Methods : The author examined the extent and recurring patterns of the paranasal sinusitis and some important anatomic landmarks. The author analyzed PNS images retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. Results : The most frequently affected sinus was maxillary sinus (82.9%), followed by anterior ethmoid sinus(67.9%), posterior ethmoid sinus(48.9%), frontal sinus(42.0%) and sphenoid sinus(41.4%). The characteristic features of CT images of the sinusitis were sinus opacification(22.4%), mucoperiosteal thickening(34.3%), and polyposis(2.0%). Sinonasal inflammatory diseases were categorized into 5 patterns according to Babber s classification. They were 1) infundibular(13.0%), 2) ostiomeatal unit(67.4%), 3) sphenoethmoidal recess (13.0%), 4) sinonasal polyposis (9.6%) and 5) unclassifiable patterns(18.0%). The incidences of contact between sinus and optic nerve were as follows ; the incidences of contact with posterior ethmoid sinus, sphenoid sinus. both posterior sinuses were 11.4%. 66.8%, 6.3%. respectively. The incidences of contact between sphenoid sinus and maxillary nerve, vidian nerve, internal carotid artery were 74.5%. 79.2%. 45.1%. respectively. The incidences of pneumatization of the posterior ethmoid sinus were as follows ; normal 70.6% and overriding type 29.4%. The incidences of sphenoid sinus pneumatization were as follows; normal 56.9% , rudimentary 12.5%, pterygoid recess 22.7%, anterior clinoid recess 2.7%, and both pterygoid and anterior clinoid recess type 5.2%. Conclusions : The inflammatory sinonasal diseases were classified into five patterns using the CT of PNS, which was proven to be an excellent imaging modality providing detailed information about mucosal abnormality, pathologic patterns, and the proximity of the important structures to the posterior paranasal sinuses. This result will aid in the interpretation of CT of PNS functionally and systemically.

  • PDF

사상체질음성분석기(四象體質音聲分析機)(PSSC-2004)를 이용한 한국인 소아의 체질별(體質別) 음향특성(音響特性) (Sound Characteristics of Sasang Constitutional Type Using PSSC-2004 in the Korean Children)

  • 김혁;양상묵;심규헌;김달래;유준상
    • 사상체질의학회지
    • /
    • 제18권2호
    • /
    • pp.55-67
    • /
    • 2006
  • 1. Objective & Method The purpose of this study was to objectify the diagnosis of Sasang constitution. 163 children's voices were analyzed with 74 factors using PSSC-2004. 2. Results (1) In male children group, Taeumin's APQ4 was significantly low compared with the others. (2) In male children group, Taeumin's octave 5 & octave 6 were significantly low compared with the others. It was significant distinction between Taeumin and Soeumin at the result of post hoc. (3) In male children group, Taeumin's Time Domain Total Sum / Time Domain Count & Frequency Domain Total Sum / count(0) were significantly low compared with the others. It was significant distinction between Taeumin and Soeumin at the result of post hoc. (4) In male children group, Taeumin's 0k-2k total sum & 2k-4k total sum were significantly low compared with the others. It was significant for distinction between Taeumin and Soeumin at the result of post hoc. (5) In male children group, Taeumin's 2k-4k deviation was significantly low compared with the others. It was significant distinction between Taeumin and Soeumin at the result of post hoc. (6) In male children group, Taeumin's D# Total Energy & F# Total Energy were significantly low compared with the others. It was significant distinction between Taeumin and Soeumin at the result of post hoc. (7) In male children group, Taeumin's D# deviation & F# deviation were significantly low compared with the others. It was significant distinction between Taeumin and Soeumin at the result of post hoc. (8) In female children group, Soyangin's center frequency (7) was significantly high compared with the others. It was significant distinction between Taeumin and Soyangin at the result of post hoc. 3. Coclusion With these results, we got some information for standardization of the clinical diagnosis guideline of Sasang constitutional type classification using PSSC-2004 in the Korean children

  • PDF

3차원 안면자동인식기의 형상복원 오차검사 (An Error Examination of 3D Face Automatic Recognition)

  • 석재화;조경래;조용범;유정희;곽창규;이수경;고병희;김종원;김규곤;이의주
    • 사상체질의학회지
    • /
    • 제18권2호
    • /
    • pp.41-49
    • /
    • 2006
  • 1. Objectives The Face is an important standard for the classification of Sasang Contitutions. We are developing 3D Face Automatic Recognition Apparatus to analyse the facial characteristics. So We should examine a shape demobilization error of 3D Face Automatic Recognition Apparatus. 2. Methods We compared facial shape data be demobilized by 3D Face Automatic Recognition Apparatus with facial shape data that be demobilized by 3D laser scanner. The subject was two korean men. And We analysed the average error and the maximum error of two data. In this process, We used one datum point(the peak of nose) and two datum line(vertical section and horizontal section). 3. Results and Conclusions In each this comparison, the average error of vertical section was 1.962574mm and 2.703814mm. and the maximum error of vertical section was 16.968249mm and 18.61464mm. the average error of horizontal section was 4.173203mm and 21.487479mm. and the maximum error of horizontal section was 3.571210mm and 17.13255mm. Also We complemented this apparatus a little and We reexamined a shape demobilization error of 3D Face Automatic Recognition Apparatus again. Accuracy of a shape demobilization was improved a little. From now on We complement accuracy of a shape demobilization in 3D Face Recognition Apparatus.

  • PDF

스마트 기기의 멀티 모달 로그 데이터를 이용한 사용자 성별 예측 기법 연구 (A Study on Method for User Gender Prediction Using Multi-Modal Smart Device Log Data)

  • 김윤정;최예림;김소이;박규연;박종헌
    • 한국전자거래학회지
    • /
    • 제21권1호
    • /
    • pp.147-163
    • /
    • 2016
  • 스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.

부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구 (Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia)

  • 이현주;신동규;박희원;김수한;신동일
    • 정보처리학회논문지B
    • /
    • 제18B권6호
    • /
    • pp.341-348
    • /
    • 2011
  • 생체신호의 한 분야인 심전도는 분류알고리즘을 사용한 실험이 일반적이다. 심전도를 실험한 논문에서 사용된 분류알고리즘은 대부분 SVM(Support Vector Machine), MLP(Multilayer Perceptron) 이었으나, 본 실험은 Random Forest 분류기를 시도하였다. 실험방법은 Random Forest 알고리즘을 실험데이터의 신호의 특징에 기반하여 분석하도록 수정하였고, 분류기의 수정된 알고리즘 성능을 규명하기 위하여 SVM과 MLP 분류기와 정확도를 비교 분석하였다. 실험에서는 심전도 신호의 R-R interval을 추출하여 시행하였으며 또한 동일한 데이터를 사용한 타 논문의 결과와 본 실험의 결과를 비교 분석하였다. 결과는 수정된 Random Forest 분류기가 SVM, MLP 분류기, 그리고 타 실험의 결과보다 정확도 부분에서는 우수한 결과를 도출하였다. 본 실험의 전처리 과정에서는 대역통과필터를 사용하여 R-R interval을 추출하였다. 그러나 심전도 실험에서는 대역통과 필터 뿐 아니라, 웨이블릿 변환, 메디안 필터, 유한 임펄스 필터 등으로 실험하는 경우가 많다. 따라서 향후에는 전처리과정에서 기저선 잡음(baseline wandering)을 효율적으로 제거하는 필터의 선택이 필요하며, R-R interval을 정확하게 추출할 수 있는 방법에 대한 연구가 필요하다고 사려된다.