• 제목/요약/키워드: influent sewage

Search Result 142, Processing Time 0.023 seconds

Analysis of Process and Operating Characteristics for Chung Nam Province Sewage Treatment Plants (충청남도 하수처리시설의 공정 및 운영 특성 분석)

  • Oa, Seong Wook;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.553-559
    • /
    • 2009
  • Currently, small scale sewage works are getting increase in Chung Nam Province and it is strongly required for those plants to get the information of optimized procedures and technologies. Most processes for sewage works in Korea were designed for large scale plants, so many difficulties are observed in small scale sewage works. This study was conducted to evaluate the propriety of O&M and construction cost for sewage treatment plants in Chung Nam Province. The treatment results and process stability of 32 public sewage treatment plants were also investigated. It is expected to provide optimum O&M and construction cost for future small scale sewage works and improving projects of existing plants by these results. Pollution problems caused by small scale plants are usually restricted to small areas; however, in view of the high cost per unit population, treatment requirements and alternatives have to be studied carefully. In comparison to larger plants, more pronounced and different boundary conditions such as unstable influent load, per capita costs and a large variety of feasible treatment and disposal systems were considered.

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes (하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화)

  • Lee, Myoung-Eun;Oh, Jeongik;Park, No-Suk;Ko, Dae-Gon;Jang, Haenam;Ahn, Yongtae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

An Analysis on Removal Effect of Biological Contaminants in the Process of Municipal Sewage Treatment System - On the Seoul Cheonggye Cheon Sewage Treatment Plant (도시하수 처리에 의한 미생물 오염의 제거효과에 관한 조사연구(I) -청계천 하수처리장을 중심으로-)

  • Yu Byong Tae;Chung Yong
    • Journal of environmental and Sanitary engineering
    • /
    • v.3 no.1 s.4
    • /
    • pp.27-39
    • /
    • 1988
  • This investigation was carried out to evaluate the removal effect of biological contaminants for the municipal sewage treatment process at Cheonggye Cheon terminal plant which in the first plant for municipal sewage treatment in Seoul area. It was conducted in raw influent, primary treatment water and secondary treatment water from September, 1986 to July, 1987. The results were as follow; 1, The primary treatment could eliminate microbials for $65.38\%$ of total bacteria, $64.35\%$ of total coliform, $62.16\%$ of fecal coliform $69.48\%$ of pseudomonas and $64.70\%$ of fecal streptococci in averages for a year respectively. 2. The secondary treatment could eliminate microbials for $97.50\%$ of total bacteria, $97.30\%$of total coliform, $95.95\%$ of fecal coliform, $97.00\%$ of pseudomonas and $96.53\%$ of fecal streptococci in average for a year respectively. 3. In the detect rate of pathogenic agent, salmonella spp was decreased $12.5\%$ to $4.2\%$ in primary treatment and it was not detected in secondary treatment, shigella spp was detected $4.2\%$ in influent water but it was not detected in primary and secondary treatment. 4. In the seasonal variation of treatment effect, the removal of summer was the highest, and the removal of all item in winter was lower than the other seasons. 5. There was significant correlation between water temperature and microbal all items (P<0.05) $NH_3-N$ and Microbal items (P< 0.01) at raw water.

  • PDF

An aerobic granular sludge process for treating low carbon/nitrogen ratio sewage

  • Yae, JaeBin;Ryu, JaeHoon;Tuyen, Nguyen Van;Kim, HyunGu;Hong, SeongWan;Ahn, DaeHee
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2019
  • This study investigated the characteristic of aerobic granular sludge (AGS) process to treat the sewage having low carbon/nitrogen ratio (Biochemical oxygen demand ($BOD_5$):Total nitrogen (T-N), 4.5:1) in sequencing batch reactor (SBR). The removal efficiency of $BOD_5$, suspended solid (SS), T-N and phosphorus ($PO_4{^{3-}}$-P) were 92.6%, 64.3% and 90.1%. Concentration and size of AGS were changed in proportion to the organic matters and nitrogen concentration of the influent (Concentration and size of AGS: 1,700-3,000 mg/L, 0.5-1.0 mm). Mixed liquor suspended solid (MLSS) also changed with the concentration of AGS (MLSS: 2,000-3,500 mg/L). When the settling time was shortened from 15 min to 10 min, size and shape of AGS were maintained (Size of AGS: 1.0-1.5 mm). In addition, the concentration of AGS and MLSS increased (Concentration of AGS: 3,500 mg/L, MLSS: 4,000 mg/L). Concentration, size and shape of AGS were affected the settling time of the reactor more than the concentration of organic matter and nitrogen in the influent. In the results of removal efficiency and changes in AGS, we confirmed that the SBR process using AGS can be used to treat the sewage having low carbon/nitrogen ratio by applying short settling time.

A study on operation and management for TOC removal of public sewage treatment works (하수처리시설에서 총유기탄소(TOC) 처리를 위한 운영·관리 고찰)

  • Jeong, Dong-Hwan;Chung, Hyenmi;Cho, Yangseok;Kim, Eunseok;Kim, Changsoo;Park, Junwon;Lee, Wonseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.535-550
    • /
    • 2018
  • Total organic carbon (TOC) will replace chemical oxygen demand ($COD_{Mn}$) as an effluent water quality standard in public sewage treatment works (PSTWs) from 2021 in Korea. To ensure effective control of TOC in the effluent, investigation was carried out into TOC levels and sewage treatment operation factors in five target PSTWs using anaerobic-anoxic-aerobic ($A_2O$) processes, media, membrane, and sequencing batch reactor (SBR) technologies. TOC removal efficiencies appeared to be 93-96% on average. As a fraction of TOC, biodegradable dissolved organic carbon (BDOC) was reduced from 64% in the influent to 9% in the effluent in these PSTWs. During the investigation, biological treatment processes were applied flexibly for operation factors such as HRT, SRT, MLSS, F/M ratios and BOD volume loads, based on the influent characteristics and design conditions. As a result, we suggest efficient operating conditions in PSTWs by evaluating relationships between TOC removal and operation factors.

Evaluation of Solids Removal Characteristics on Sewage Treatment Plants Using T-P sludge Return into the Primary Settling Tank (총인슬러지의 1차 침전지 반송에 따른 하수처리장 고형물 제거특성 연구)

  • Kim, Jong-Oh;Jung, Dong-Gi;Kwon, Hye-Jeong;Hwang, Joon-Seok
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.73-80
    • /
    • 2018
  • In this study, the solids removal characteristics using T-P sludge generated from PACl coagulation were analyzed by laboratory scale and full scale experiment. As the amounts of T-P sludge injection into the raw sewage influent increased at the rate of 0, 1, 2, 3, 4 %, the suspended solids concentrations after 20 minutes setting test decreased to 210, 137, 91, 64, 43 mg/L, respectively. The filtration time required for dewatering test of the raw sewage influent decreased to 982, 728, 658, 581, 492 sec for 0, 1, 2, 3, 4% of T-P sludge injection, respectively. As the amounts of PACl coagulant into the effluent from final setting tank increased at 0, 10, 20, 30, 40 mg/L, the required filtration times for T-P sludge increased into 12.3, 41.7, 53.7, 67.2, 79.5 sec and the dewaterability of T-P sludge decreased. After T-P sludge returned into the primary settling tank on J-si sewage treatment plants, the effluent concentrations of COD, SS, T-N and T-P from primary settling tank into bioreactor decreased by 35.9, 27.9, 22.2, and 52.6% due to the coagulation effects of the T-P sludge. Finally, it was found that the return of T-P sludge into the primary settling tank could result into the sludge reduction having a lower water content of 3.03% p than in case of the only T-P sludge dehydration.

Application Study of small-scale sewage treatment system with A2/O precess in Mongolia (A2/O 공법을 이용한 소규모 하수처리시스템의 몽골 현지 적용에 관한 연구)

  • Yeo, Yeongki;Kim, Younghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.431-440
    • /
    • 2017
  • The small-scale sewage treatement system with $A^2/O$ process was applied to evaluate applicability for Mongolian sewage, It was designed to have 10 m3/d flowrate and installed in Ulaanbaatar, Mongolia. During over 6month operation BOD, COD, TN, TP removal efficiency were measured and operation condition was optimized. In addition, MLSS concentration its internal circulation rate and DO were adjusted properly. BOD, COD showed average 88 perecent of removal and TN and TP achieved 81 percent and 88 percent removal efficency, respectively. Maxium influent concentration of BOD, COD, TN and TP was 214 mg/L, 300 mg/L, 24.3 mg/L and 5 mg/L respectively, which were decreased to 4.1 mg/L, 5.6 mg/L, 1.3 mg/L and 0.15 mg/L by the test system. This study show possibility tham small-scale sewage treatment system could be a useful system for scattered sewage wastewater treatment.

Developing a New BNR (Parallel BNR) Process by Computer Simulation (컴퓨터 시뮬레이션을 이용한 신 생물학적 고도처리 (병렬 고도처리) 공법 개발)

  • Lee, Byonghi;Lee, Yong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Since Korean government imposed a stricter regulation on effluent T-N and T-P concentrations from wastewater treatment plant, a new process has to be developed to meet these rules and this process should remove T-N and T-P, economically, from weak wastewater that is typical for Korea's combined sewer system sewage. In this study, a computer simulator, BioWin from EnviroSim, Inc. was used. Three processes - A2/O, Modified Johannesburg, UCT- had been simulated under same operational conditions and a new process - Parallel BNR Process - had been developed based on these simulation results. The Parallel BNR process consists of two rows of reactors: One row has anaerobic and aerobic reactors in series, and the other row has RAS anoxic1 and RAS anoxic2 reactors in series. In order to ensure anaerobic state in anaerobic tank, a part of influent is fed to RAS anoxic1 tank in second row. This process had been simulated under same conditions of other three processes and the simulation results were compared. The results showed that three existing processes could not perform biological phosphorus removal when the average influent was fed at any operation temperatures. However, the Parallel BNR process was found that biological phosphorus removal could be performed when both design and average influent were fed at any operation temperatures. This process showed the T-N concentration in effluent had a maximum value of 15mg/L when design influent was fed at $13^{\circ}C$ and a minimum value of 14mg/L when average influent was fed at $20^{\circ}C$. Also, T-P concentrations had a maximum value of 1.3mg/L when average influent was fed at $20^{\circ}C$ and a minimum value of 1.1mg/L when design influent was fed at $13^{\circ}C$. Based on these results, we found that this process can remove nitrogen and phosphorus biologically under any operational conditions.

Analysis and Prediction of Sewage Components of Urban Wastewater Treatment Plant Using Neural Network (대도시 하수종말처리장 유입 하수의 성상 평가와 인공신경망을 이용한 구성성분 농도 예측)

  • Jeong, Hyeong-Seok;Lee, Sang-Hyung;Shin, Hang-Sik;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.308-315
    • /
    • 2006
  • Since sewage characteristics are the most important factors that can affect the biological reactions in wastewater treatment plants, a detailed understanding on the characteristics and on-line measurement techniques of the influent sewage would play an important role in determining the appropriate control strategies. In this study, samples were taken at two hour intervals during 51 days from $1^{st}$ October to $21^{st}$ November 2005 from the influent gate of sewage treatment plant. Then the characteristics of sewage were investigated. It was found that the daily values of flow rate and concentrations of sewage components showed a defined profile. The highest and lowest peak values were observed during $11:00{\sim}13:00$ hours and $05:00{\sim}07:00$ hours, respectively. Also, it was shown that the concentrations of sewage components were strongly correlated with the absorbance measured at 300 nm of UV. Therefore, the objective of the paper is to develop on-line estimation technique of the concentration of each component in the sewage using accumulated profiles of sewage, absorbance, and flow rate which can be measured in real time. As a first step, regression analysis was performed using the absorbance and component concentration data. Then a neural network trained with the input of influent flow rate, absorbance, and inflow duration was used. Both methods showed remarkable accuracy in predicting the resulting concentrations of the individual components of the sewage. In case of using the neural network, the predicted value md of the measurement were 19.3 and 14.4 for TSS, 26.7 and 25.1 for TCOD, 5.4 and 4.1 for TN, and for TP, 0.45 to 0.39, respectively.

Evaluation of influent changing effect on the STP performance using Dr. Wastewater (Dr. Wastewater program의 적용을 통한 하수처리장 운전에 미치는 유입수 변동 영향평가)

  • Kim, Youn Kwon;Kim, Hong Suck;Seo, In Seok;Kim, Byung Goon;Han, In Sun;Kim, Jin Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.647-655
    • /
    • 2008
  • Sewer Rehabilitation Project (SRP) is planed, designed and constructed to perform its intended performance as sewerage delivery systems. Recently, a subject of performance evaluation methodology development for SRP has become a great deal of concern among researchers in Korea. From the view point of Sewage Treatment Plant (STP), however, the estimation of improvement efficiency for SRP is in lack of reliability due to the fact that affections for the treatment efficiency and operating condition are not reflected on SRP design and construction. In this study, statistical methodology was used in the analysis of data, which are taken during 1,186 days ($1^{st}$ Jan. 2005 - $31^{th}$ Mar. 2008) from the influent, effluent and operating conditions of full-scale STP($25,000m^3/d$). Then the effect of SRP on the influent characteristics and operating conditions changing was compared and evaluated. Results from the statistical evaluation show that SRP causes characteristic changes in influent and exerts a significant effect especially on the performance of STP.