• Title/Summary/Keyword: influence parameter

Search Result 1,314, Processing Time 0.025 seconds

The Effects of Demographic Characteristics and Psychological Characteristic on Make-up Behavior of Women (성인여성의 인구통계적 변인과 심리적 특성이 화장행동에 미치는 영향)

  • Choi, Su-Koung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.8
    • /
    • pp.60-74
    • /
    • 2007
  • This study intends to examine the influencing factors in personal intention and show-off of make-up behavior. For the study, a questionnaire survey was conducted of 436 women in between their twenties to fifties residing in the Kyeongnam region. Obtained data were analyzed pearson's correlation coefficient and multiple regression analysis. The result is summarized as follows.; The influence on personal intention and show-off of make-up behavior can be described into 4 factors that are included in the decision making process of personal intention and show-off, in other words, the demographical characteristic, the body cathexis, the need and the clothing value. The demographic characteristics, the marriage status, the occupation status and the media contact had a direct influence on personal intention, and the educational background had a direct influence on show-off. The body cathexis did not have a direct influence on any subordinate factors of personal intention and show-off, but had indirect influence having the need as a parameter or had no influence having the clothing value as a parameter.

Effects of Twisting Parameters on Characteristics of Rotor-Spun Composite Yarns with Spandex

  • Zhang H.X.;Xue Y.;Wang S.Y.
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.66-69
    • /
    • 2006
  • Spandex fibers have superior stretch and elastic recovery ability. Composite yarns containing spandex are frequently used to manufacture elastic textile products and accessories. We have developed a composite yarn spinning system that produces different kinds of composite yarns containing spandex on a modified open-end rotor spinning frame. By changing the twisting parameter of composite yarns, we studied the structure and properties of rotor-spun composite yarns with spandex. The results indicate that the twisting parameter has great influence on the structure and properties of rotor-spun composite yarns with spandex. The linear density of spandex filament has influence on the properties of composite yarns too. In comparison with normal rotor-spun yarn, the appearance of composite yarns is clearer, the structure is much tighter, and the properties are improved.

A Study on the Correlation of Orthogonal Cutting all sorts Parameter and Acoustic Emission Signal (2차원 절삭시의 각종 파라메터와 음향 방출 신호와의 상호 관계에 관한 연구)

  • Kim, Jae-Yeol;Sim, Jae-Gi;Park, Hwan-Gyu;O, Hwan-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.74-83
    • /
    • 1991
  • A study on the Correlation of Orthogonal Cutting Parameter (Cutting speed, Depth of cut, Feed Rate) and Acoustic Emission Signal. It is well known that acoustic emission (AE) is the emission of elastic wave resulting from the deformation and fracture of materials. This study estabished correlation of orthogonal cutting parameter and AE signal, and researched into in-process monitoring of tool wear and failure. The results are as follow; 1. AE RMS was under the influence of cutting speed but hardly influenced by depth of cut and feed rate. 2. AE RMS was under the influence of flank wear. 3. AE count rate increased by increased cutting speed. 4. AE RMS value was rapidly increased in 130 m flank wear.

  • PDF

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.

A Proposed Reduction Method for Vibatiton Analysis of Automobile Engine Crakshfts (자동차 엔진 크랭크축의 진동해석을 위한 자유도 저감법 개발에 관한 연구)

  • 최명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 1996
  • High speed engines with high power are increasingly on demands and almost engines employ crankshafts Such problems as bending and torsional vibrations become the point at issue in crankshaft analysis and design. In this study to overcome the diffiiculty with the large amount of computation in finite element vibration analysis of a crankshaft, a reduction method based on influence coefficient and lumped parameter is presented. which reduces the computation amount effectively and can be used in vibrational analysis and design of any types of crankshafts Crank journal and pinparts are meodelled as elements with 6degrees of freedom per node. Crank web part is modelled using equivalent mass and stiffness matices . based up on lumped parameter and influence coefficient respectively to reduce total degrees of freedom considerablely. To confirm the scheme of the study the results are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well The scheme of this study can be utilized in evaluation results agree well. The calculated result are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well. The scheme of this study can be utilized in evaluation and development of high speed engine.

  • PDF

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

Derivation and verification of influence function on parameter δ proposed by Ghosh and Kim (Ghosh와 Kim 모수 δ의 영향함수 유도 및 확인)

  • Kim, Minjeong;Kim, Honggie
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.529-538
    • /
    • 2017
  • The Ghosh and Kim zero-altered distribution model is used to analyze count data that have too many or too few zeros. The dispersion type parameter ${\delta}$ in the zero-altered distribution model consists of mean, variance and zero probability and has two forms depending on the relation between ${\mu}$ and ${\sigma}^2$. We derived the influence function on ${\delta}$ when ${\sigma}^2{\geq}{\mu}$. To show the validity of the influence function, we used the Census data on the number of births of married women in Korea to compare the estimated changes in ${\delta}$ using this function with those obtained using the direct deletion method. The result proved that the obtained influence function is very accurate in estimating changes in ${\delta}$ when an observation is deleted.

Influence of Concentric Saddle Shaped Coils on the Behavior of a Permanent Magnet Transverse Flux Machine with Segmented Construction

  • Baserrah, Salwa;Rixen, Keno;Orlik, Bernd
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.100-108
    • /
    • 2012
  • Flux concentrated permanent magnet transverse flux machines, FCPM-TFMs, with segmented stators require multi-turn concentric saddle coils to replace the ring coils, which are normally utilized in conventional layeredphase TFM constructions. In this paper, we investigate the influence of the shape of saddle phase windings and their parameter variations on the output torque productivity. Non-meshed coils evaluated via a finite element method (FEM) to examine the effect of the coil's location within one phase on machine performance. By using meshed coils, the analysis can be extended to inspect the distributions of magnetic field strength as well as current density in the coils. Throughout the study, the influence of design parameters on the output torque for two stator structures, i.e., a laminated and soft magnetic composite (SMC), are evaluated.